
·'

':Representing and Manipulating
Information

2. 1 Information Storage 34

2.2 Integer Representations 59

2'.3 Integer Arithmetic 84

2.4 Floating Point 108

2.5 Summary· 12q"

Bibliographic Notes 127

Homework Problems 128

Solutions to Practice Problems 143

31

----- ·~--·

32 Chapter 2 Representing and Manipulating Information

Modern computers store and process information represented as two-valued
signals. These lowly binary digits, or bits, form the basis of the digital revo

lution. The familiar decimal, or base-10, representation has been in use for over
1,000 years, having been developed in India, improved by Arab mathematicians in
the 12th century, and brought to the West in the 13th century by the Italian mathe
matician Leonardo Pisano (ca. 1170 to ca. 1250), be her known as Fibonacci. Using
decimal notation is natural for 10-fingered humans, but binary values work better
when building machines that store and process information. Two-valued signals
can readily be represented, stored, and transmitted-for example, as the presence
or absence of a hole iii a punclied card, as a high or low voltage on a wire, or as a
magnetic domain oriented clockwise or counterclockwise. The electronic circuitry
for storing al\'d performiJ?-g. computations on two-vafoed ,s1gnals~s very simple and
reliable, enabling manufacturers to integrate millions, ·or even billions, of such
circuits on a single silicon chip. . 1 !

In isolation, a single bit is not v'ery•useful. When we groui}·bits together and
apply some interpretation that gives meaning to the different possible bit patterns,
however, we can represent the elements of any finite set. For example, using a
binary number system, we can use groups of bits to encode nonnegative numbers.
By using a standard character code, we can encode the letters and symbols in a
document. We cover both of these encodings in this chapter, as well as encodings
to represent negative numbers and to approximate_real num15ers.

We consider the three most important r~presenta,tions of numbers. Unsigned
encodings are based on traditional binary notation, representing numbers greater
than or equal to 0. Two's-complement encodings·are the m6st common way to
represent signed integers, that is, numbers that may be either positive or negative.

·I Floating-point encodings are a base-2 version of scientific notation for represent
ing real numbers. Computers implement arithmetic operations, such as addition
and multiplication, with these different representations, similar to the correspond-

"l•
ing operations on integers and real numbers.

Computer repre§entations'llsea limited,number of bits to encode a number,
and hence some operations can overflow when the results are too large to be rep
resented. This can lead to some surprising results. For example, on most of today's
computers (those using a 32-bit representation for data type int), computing the
expression

200 * 300 * 400 * 500

yields -884,901,888. This runs counter to the properties of integer arithmetic
computing the product of a set of positive numbers has yielded a negative result.

On the other hand, integer computer arithmetic satisfies many of the familiar
properties of true integer arithmetic. For example, multiplication is associative
and commutative, so that computing any of the following C expressions yields
-884,901,888:

(500 * 400) • (300 * 200)

((500 * 400) * 300) * 200
((200 * 500) * 300) * 400
400 * (200 • (300 * 500))

Chapter 2 Representing and Manipulating Information 33

The computer might not generate the expected result, but at least it is con
sistent!

Floating-point arithmetic has altogether different mathematisal properties.
The product of a set of positive numbers will always be positive, althougp over
flow will yield the special value +oo. Floating-point arithmetic is not associative
due to the finite precision of the representation. For example, the C expression
(3 .14+1e20)-1e20 will evaluate to 0.0 on most machines, while 3 .14+(1e20-
1e20) will evaluate to 3.14. The different mathematical properties of integer
versus floating-point arithmetic stem frqm the difference in ho)V.they handle the
finitenes~,of their representation,s-integer representations can encode a compar
atively small range of values, but do so precisely, while floating-point representa
tions can encode a wide range o'f values, but only approximately.

By studying the actual number representations, we can understand the ranges
of values that can be represented and the properties of the different arithmetic
operations. This under,standing is critiCJ1l to writing programs th~t work correctly
over the full range of numeric values and thpt are portable across different combi
nations of machine, operating system, and compiler. As we will describe, a number
of computer security vulnerabilities have arisen due to some of the subtleties of
computer arithmetic. Whereas in an earlier era program bugs would only incon
venience people when they happened to be triggered, there are now legions of
hackers who try to exploit any bug they can find to obtain unauthorized access
to other people's systems. This puts a higher level of obligation on rrogrammers
to understand how their programs work and how they can be made to behave in
undesirable ways.

Computers use several different binary representations to encode numeric
values. You will need to be familiar with ·these representations as you progress
into machine-level· programming in Chapter 3. We describe these encodings in
this chapter and show you how to reason aboutnumber representations.

We derive several ways to perform arithmetic' operations by directly ma
nipulating the bit-level representations of numbers. Understanding these tech
niques will be important for understanding the machine-level code.generated by
compilers in their attempt to optimize the performance of arithmet_ic expression
evaluation.

Our treatment of this material is based on a core set of mathematical prin
ciples. We start with the basic definitions of the encodings and then derive such
properties as the range of representable numbers, their bit-level representations,
and the properties of the arithmetic operations. We believe it is important for you
to examine the material from this abstract viewpoint, because programmers need
to have a· clear unqerstanding of how computer arithmetic relates to the more
familiar. integer and real arithmetic.

The C++ programming language is built upon C, using the exact same numeric
representations and operations. Everything said in this chapter about C also holds
for C++. The Java .. language defiµition, on the other hand, created a new set of
standards for numeric representations and operations. Whereas the C standards
are &signed to allbw a wide range of implementations, the Java standard is quite
specific on the formats and encodings of dat'a .. We highlight the representations
and operations supported by Java at several places in the chapter.

I:'

I
"

·-· -· ____________ ._. ·--..:-=-::...c===--=-::........:1-

34 Chapter 2 Representing and Manipulating Information

, ~ ·f': '"": .,..~ ip.t- " r~t • ;""· tii ,jl'.:t: ~ ~ • ,·:1· °" ~., ·"'"~ i .~ ~::t ~f'e~,;;'t},A:t "'i ~· ~ ;

"'side. How to reac;f·,this ,chapte~ ~ .,, , , ., ,, ' "1>· , ct ''-" , 1 ·1~,Y

In th{s chapter, we examin~~the~(Jtia.am~~ntil'piOp1eiu·es·~oi'~o\v llUrilb~S~~1Jd Jth'if~Qrin~_~i ~tat;~~ -
. represenkd on a c(>fu~u-~ii~~ef tlie-pr?~e?ti~~ of~~\, ~i;~i;,i.~~o_n~ [Ii'\~ 1,o'ql:P,ul~l~"Jle~f~'.fu b~. t-~~s~aata~-
Th1s reqmres us tq cfelV'e-mto:ilie ll!ng\i1lgebf malhfapahcs;'Wr1bnglorlnulas·dha'equat10ns a11t1showmg'
d~rivatiOns of imPSrta:rlt Pr~~;;"ftie~./.{,' ~ \,. ~ .J•·~ """'·'f.~~.,,~.. '·5 ·.tt ttL ~, '.·~ ' _;d'"ol ~ ·, ~

To help you mivlgatl:'tliis" ei'ebsfilon~.,,ie '!i\ve sfrilclurea th'e'pre'seriflitiBn to•ffr~t stale a property :
a~ a p/frieiple in ma;~~µiati~ti1 .~ota;io~:~~ t~ln ill~st.rate iN~J?tinc!pl~~il?.ei~fa:!Pl~'<lnd _an)h[,0;~~1- j
d1scuss1on. We ~ec?~YJe~~·t~a~7d';"&_o ba~k ~n:d:f?r~H betw:en t~~-s~a~~~en;'~) the, p~~!p!e:ai;d,fil.b' •
examples and ihscussmrl until yoll•have a sohd mtmtmnjqr what 1s, bemg said ~nd·whans~mpqrtanr 1
al;>out the proper,ty.~or m6re cblriPJex p.r?pertl,e~,·~\ ;a,ls9):~r'O~id,~ll 'de~"tfia~o~~ s:ruc~upld'.J;l~ch)i~e~'.~
a.mathematical proof. ¥ou'should try to'un:derstand these·denvat1drt! even,llally, but y6'U'could"'Sk1p ~
overthemonfirstre·aOing. ·;~, _·t•:"' .''-..~ . ~~ 't•, ~ g~ ~t.i·~~.' ~~..,

3

• q.t "t,(~1 .. ,.~fi};.- _1.f~fl "1

W~ ~!_so encouf~ge~?;!'~o w-:Or~on lhirrac~~ p~obie~~isy?u p,;oci;,fd1?r~~?~ t~eptest,'!~a~ibn. !
The practice proble!'ls"ngiige'y,ou•m active learmng, lielpn';g you put~hoµghts mfo;action. W1tntJiese.1
as background, yov'will'i\il<l l{muc1i.!'llsi~r'tl:>·g,o·$acli:.aiid·follow tlie'!leiiv~tiong_ Be assdr~d; as \v!'il:" 1

thatJhe mathematicai'sKills'required ti> unde;star\a lhfs'm~tetiill ,ar~ J.ithin &licfi'.of's;,meoiif>·with'a· 1
good wasp of high ~tHooi'aljebpf. "· "'"' ' . " • • "» •))!' ,. '~ •' ~· ''\..' !

,,,;' 1,;:i~,~J.'.'~.~-t "'" .,,, .,,.,..JiJ::. ~~t."~,,,_,!.....,,~,.,, "'.....,} ,~1b. _.,,,.,~~__.~ .. --...... ·I Uw s~:~

·'

2.1 lnfbrmation Storage

Rather than accessing individual bits in memory, most computers use blocks of
8 bits, or bytes, as the smallest addressable unit of memory. A: machine-level
program views memory as a very large array of bytes, referred to as virtual
memory. Every byte of memory is identified by a unique number, known as its
address, and-the set of all possible'addresses is known as the virtual addre~s space.
As indicated by its' name, this virtual address space is just a ·conceptual image
presented to the machine-level program. The actual i)Iiplementation (presented
in Chapter 9) tlses a combination of dynamic random •access memory (DRAM),
flash memory, disk storage, special hardware, and operating system software to
provide the program with what appears to be a monolithic byte array.

In subsequent chapters,. we will cover how the compiler and run-time system
partitions this memory space into more·manageablemnits:to store the different
program objects, that is, program data, instructions, and control information.
Various mechanisms are used to all0cate and manage the storage for different
patts of the program. This management is all performed within the virtual address
space. For example, the value of a pointer in C-whether it,points trr an integer,
a structure, or some other program <;>bject-is the virtual address of the first byte
of some block of storage. The C compiler also associ~tes ·type· information with
each pointer, so that it can generate different machine-level code to access the
value stored at the location designated by the pointeP dependingwn the type of
that value. Although the' C•compiler maintains:this type information, tlie actual
machine.Jevel program it generates has no information about data types. It simply
treats each p<ogram object as a.block of bytes and the program itself as a sequenc;e
of bytes.

Section 2.1 Information Storage 35

i.'!".,,--~ _,......,.,,.~ ·""·'· -- . ""('- ,, --·h'• ·-""' "" i Aside 'fhe evolution of the C programming languag,e' "

I As-was described in an aside on page 4, lhe'C programming lang'Uage w/s first developed by Dennis I Ritchie of Bell Laboratories for.use with the Unix operati~g system '(also developed at'Bell Labs). At

I' the time, pi9st.system programs, such as operating systems, had to be written larg:Iy in assembly code
• in order to;chave access to the low-level representation&of different data'types:.For.example, it was

I not feasible to write a mem' ory allocator, such as is provided by,.the malloc Jibrllry function, in other
high-level languages of that' era. · "

! The origiral Bell Labs ve~1io!' pf C was dofumented \n th.e first edition of the book by .Brian
Kernigh~n and :genri~ Ritcpie (691· Ov,er }ime, C _has evolv~.d tfir0ugh the effortf of several standard

i izi'tion grpups. The ~rst major revision of }he original Bell~bs. C led, to the AN~I C standard in 1989;
by a 'group working under the auspices of:lhe Amerfoan National Stanilarcli; institute. ANSI C was a

[m~jor departure from B~ll l:~bs C, &p7cia!ly~ the, w?-f functions' are <!?~Jar;;{ ANSI C is descriped.
j i\i the.s";c,o;i<l.e$tio}l of Kernighan ~!'d Ritcnie's,boof [6t], whjch' is stjll considered one of the best.
!. refereµcesonC.,, , , , , . . , , ,
I ,,. 1/le,Jntef!1atipna! ,Sta\lc;lards,grgaoiz~tio,n ,to~k oyer .respp11sibiii\Y for, stand~rdizing the C lao-

1
.guag~, ado. ,Ptio¥ a v,e,rsiqh Jha,t was, sug~~fl\I. [' aUy.:the. sall).i;, as At'$I <;:,'in J. Q91l aoC!- ~ence is referred to
as "ISO G90.'! ' • ' .

• ?J,is.~_arp.~ ?rg.anizaii'?n ~ponso~ed an uJ<lati?g of t~e.Ja~~uai;e,il' i.9~?, yjel<!i\l~ ·:rso C99." Among
o\Jier tl\in.gs,_this, vepjon in\n;>d!lced so~ new ,d~t.~ \YR'?S and p]qviped supl?ort for t.«xt sti;ing! requiring

! cl,Ja~~cJHS not,fqul\9,in 11\~Jli,ig)jsh !'l!IJ;µ~g~. ~IIJ}>r"<;Tcept sfaJl;O!'~~ was ,approyed in 2011, and hence
l i~ named !•rso Cl l," again adding In,ore data types anct·fea(ures'.)\1,ost of th,ese re~ent additions have

1 :been.bafkwar.d 7\'mPi{t,ib!e, mpa.oihg,t~~t pr,ogr,am~ wrjtten acco~.~i~g/? the ep.rlier standard (at least
.. l's.far back;"" ~Sp c~9),)'{1ll havl' ,the same li,?r~vmr wh~n compi.~e.d accc}rdingJo the newer standards.

, ~e,_GNlJ c.orripiler ~oV«ct\on,_(a~) can corp.pi!• P!'9.~~~sAC::d~di!1£t? the l'o'tveµtions of seyeral
, \li\!~rl'nt•ve•?,iqi:;~ p~ t~~ C)~ngu.~e,e;~tt~e;:, on dif\1<r1>nt Y.?P-\D);~:ic\-line opj~ons, as shown in Figure 2.1.

For exampl;, to cqm~Il.l,P{'?gram pro.g,,c acpo1dilfg~o'1S01$!).l, 'YI' ~S?uld g~ve,th.,.command line
~· ~ . ,

J.in~xx-gq,c -is.t~=.tq1,~_'<t'P~og. c~ ' .,,,. . , ~- ,,;• " ,t

• 'th~lo~~ons -..;,:sf Ji;ct -~'d.='cs9- ha;e 'ige~!ic~(eff'ect-tl!e'cod;; 1l SPl!'pil~dJccording to the ANSI
·or ISO C9o'.st:indatd.'(t90'is sBfuetim~'s referred fo as ''C89;' sirice'itsstanda!di~alion effort began iii
·1~s9f'h\~.opti~nn -~d=~99.,cau~es th~):8mpif~r t6Io)JO'{fth<; !S.9 C9\J cqt:v~n~dn. '

.:r .'.As of tlie wiitilig of this book; ~hen no oj:>tio~ is seecified,'the ~ro'ftram will tie compiled according
tQ a,: \ersibrt •tf1 c· Ilased,.on ISO '690; ,but'.jnclucllng ioine '.feaiur~s'\;fc99;°:some of Cll, some of
C++, and.bthers specific to _qcc,.Jlie GNU pr9ject.is developjng a·version that combines ISO Cll,
{?llJ.S,Other {~atures, tli'at c~.rl 1;>11.se1;cified wjtll the ~ommand-)iµj;pptioi:i. -~;g;'.:gnuJL (!=urrently, this
·imple11.1entatiol) is incpmplete.) Thjs will become the·default version.

C version

GNU89
ANSI, ISO C90
ISO C99
ISO Cll

li:. 4

occ command-line option

none,-std=gnu89
-ansi,-std=c89
-std=c99
-std=c11

Figure 2. 1 Specifying different versions of C to GCC.

f - - - -----·------

36 Chapter 2 ·Representing and Manipulating Information

f;e:..,)~ ~~;~~~o·l~;~;;rS'in~~:-~~,,~---~:~ -~---, :~--- ·~ ~.~~·~

l Pciintfas iii:<!' a central leature' of'C. They;provide the mechanism for referencing .elements ·of data
·~tru~tur~s, including' array;;, Just lik,;:a variabl~·a pointer.has two aspects: it; v~lu; andifslype. The.
vallle indicates 'the lo9ation of,,;ome obj;,,,t;•whileits.typeindic~tes wha'.\ klnd'()f object (e.g.,i\1tege'r or
fioatihg'ii~int numjler) is store'd.at t,hatlocation. ; "'

'fruly'understa\1ding pointers requires.examining their representation ancljmplementation a(the

l ;;;'..n~=~~-~'.~:~'.l :~.::~ f~~~s i~~-~~t:~ 3~~l~m:~'.n~ in ~n.~~:t::es~:=i~.~~~ect~~ j

·'

2.'i .1 Hexadecimal Notation

A single byte consists of 8 bits. In binary notation, its value ranges from 000000002
to 111111112. When viewed as a decimal integer, its value ranges from 010 to25510.

N~ither notation is very convenient for describing bit patterns. Binary notation
is too verbose, while with decimal notation it is tedious to convert to and from
bit patterµs. Instead, we write bit patterns as base-16, or hexadecimal numbers.
Hexadecimal (or simply "hex") uses digits 'O' through '9' along with characters
'A' through 'F' to represent 16 possible values. Figure 2.2 shows the decimal and
blliary values associated with the i'6 hexadecimal digits. Written in hexadecimal,
the value of a single byte can range from 0016 to FF16·

In C, numeric constants starting with Ox or OX are interpreted as being in
hexadecinlal. The characters 'A' through 'F' may be written in either upper- or
lowercase. For example, we could write the number FA1D37B16 as OxFA1D37B, as
Oxfald37b, or even /nixing upper- and lowercase (e.g., OxFalD37b). We will use
the C notation for representing hexadecimal values in this book.

A common task in working with machine-level programs is to manually con
vert between decimal, binary, and hexadecimal representations of bit patterns.
Converting between binary and hexadecimal is straightforward, since it can be
performed one hexadecimal digit at a time. Digits can be converted by referring
to a chart such as that show,nin·Fi/lure 2.2. One simple trick fqr dojng the conver
sion in your head is to memorize the decimal equivalents of hex digits A, C, and F.

Hex digit 0 1 2 3 4 5 6 7

Decimal value 0 1 2 3 4 5 6 7

Binary value 0000 0001 0010 0011 0100 0101 0110 0111

Hex digit 8 9 A B c D E F
Decimal value 8 9 10 11 12 13 14 15
Binary value 1000 1001 1010 1011 1100 1101 1110 1~11

Figure 2.2 Hexadecimal notation. Each hex digit encodes one of 16 values.

•.

'

·:
'

Section 2.1 lnformatioh·Storage 37

The hex values B, D, and E can be translated to decimal by computing their values
relative to the first three. '

For example, suppose you are given the number Ox173A4C. You can convert
this to binary format by expanding each hexadecimal digit, as follqws:

Hexadecimal

Binary
1 7

0001 0111
3

0011
A

1010
4

0100
c

l)OO

This gives the binary representation 000101110011101001001100.
Conversely, given a binary number 1111001010110110110011, you convert it

to hexadecimal by first~plittingH into groups of 4 bits each. Note; Mwever, t!'J.at if
the total number bf bits is not a multiple of 4, you'should make the /eftmosi group
be the one with fewe1 than 4 bits, effectively padding the number with leading
zeros. Then you translate each group of bits into t'I!e corresponding hexadecimal
digit: I

Binary
Hexadecimal

11
3

1100
c

1010 1101
A D

1011
B

0011
3

1.e'mii?e;erame~~~~~,,NM~;~5!i:!lr~
Perform the following number conversions:

A. Ox39A 7F8 to binary

B. 'liiµary 110010010llll011 to hexadecimal

c':. OxD5E4C to binaFy
;.

D. binary 1001101110011110110101 to hexadecimal

When a val~e xis a power of 2, thahs, x = 2n for some ljonnegative integer
h, we can readily ~ite' x in hexadecimal f6rrn by rememb'erihg that the binary
representation of x is simply 1 followed by n zeros. The hexadecimal tligit o
represents 4 binary zeros. So, fo{ n written in th~ form i + 4j, where 0::; i ::; 3,

' ,.. ' ~ I
we can write x with a leading hex digit of 1 "(i = 0), 2 (i = 1), 4 (i = 2), or 8
(i = 3), followed by j hexadecimal Os. As an example, for x = 2,048 = 211 , we
haven'= 11 = 3 + 4 · 2, giving hexadecimal representation OxSOO.

!m'l$tis~Bf®~l.li'llillil~'ii:'.i>liiBfi~B"m~:'1;w~
Fill in the blank entries in the following table, giving the decini'ai and hexadecimal
representations of different powers of 2:

n 2" (decimal) 2" (hexadecimal)

9 512 Ox200

19 ---
16,384

Ox10000

17
32

Ox80

Converting between decimal and hexadecimal rj'>presentations requires using
multiplication or division to handle the general case. To convert a decimal num
ber x to hl'xadecimal, we can r~peatedly divide! by 16, giving a quotient q and a
remainder.r, such thatx = q ··16,l;r,. We then use the hexadecimal digit r\'present
ing r as the least significant digit·and generate the remaining digits by repeating
the process on q. As an example, consider the conversion of decimal 314,156:

•314,156 = 19,634 · 16'+ 12 (<l)

19,634=1,227 · 16 + 2 (2)

1,227 = 76 · 16 + 11 (B)

76 = 4 · 16 + 12 (C)

4 = 0 . 16 + 4 (4)

From this we can read off the hexadecimal representation as Ox4CB2C.
Conversely, to convert a hexadecimal number to decimal,, we can multiply

each of the hexadecimal digits by the appropriate power of 16. For example, given
the number Ox7AF, we compute its decimal equivalent as·?· 162 + 10 · 115 + 15 =
7. 256 + 10. 16 + 15 = 1,792'"'t-160 + 15 = 1,967.

!m'.t1ke~ffimfem'~;liHB'itl;s~il!iii1~ :tar iif~Ctsi~
A.single.byte can,,pe represented by,2 hexadecimal digits.,Hll in the missing
entries in the follo}Ving table, giving the d~cimal, binary, ahd hexadecimal values
of.different byte, patterns:

Decimal Binary Hexadecirtlal
·~ 0 00000000 OxOO

167
62 ---

188
00110111
10001000
11110011

,

·1 ;
i
' r

'

i
'i
•

Section 2.1 lnformatidn Storage 39

Decimal Binary Hexadecimal

Ox52
~ ---- OxAC

--- OxE7

~'.#::&m6~l'!l!E'm1:aE~$Ji~B~~,~~
' •' '~ II

With'?lfl qom:e.rting the mµ,nb~rs. to decjmal oi l)inary, try to solve the following
arithmetic. f>roblems, giving .tl';e ~nsw~rs in hexadecim'IL Hint: Just modify t~e
methods you use for perf9~ming.decimal addition and subtraction to use b?se li5.

A. Ox503c + Ox8 = ___ _

B. oxso3c - 0>:40 = ___ _

C. Ox503c + 6,4 = ~_.,.,__

D. Ox50ea - Ox503c = ___ _

2. 1.2 Data Sizes

Every computer has a word size, indicatipg the nominal size of pointer data. Since
a virtual address is encoded by such a word, the most important system parameter
determined by the word size is the maximum size of the virtual address space. That
is, for a machine with a w-bit word size, the virtual addresses can range from 0 to
2w - 1, giving the program access to at most 2w bytes ..

In recent .years, there has been a widespread shift from machines with 32-
bit word sizes to those with word sizes of 64 bits. This occurred first for high-end
machines designed for large-scale scientific and database applications, followed
by desktop and laptop machines, and ll).Ost recently for the processors fouQ.,q _in
smartphones. A 32-bit word size limits the virtual address space to 4 gigabytes
(writteh 4 GBj, that is, just over 4 x ·109 bytes. Scaling up to a 6~bit word size
leads to a'virtual address space of 16 exabytes, <lrarourid 1.84 x 1019 bytes.

f---------

40 Chapter 2 Representing anct Manipulating Information

Most 64-bit machines can also run programs compiled for use on 32-bit ma
chines, a form of backward compatibility. So, for example;i;hen a program prog. c
is compiled with the directive

linux> gee -m32 prog.c

then this program will run correctly on either a 32-bit or a 64-bit machine. On the
other hand, a program compiled with the directive

linux> gee -m64 prog.c

will only run on a 64-bit machine. We will therefore refer to programs as being
either "32-bit programs" or "64-bit programs," since the distinction lies in how a
program is compiled, rather than the type of machine on which it runs.

Computers and compilers support multiple data formats using different ways
to encode data, such as integers and floating point, as well as different lengths.
For example, many machines have instructions for manipulating single bytes, as
well as integers represented as 2-, 4-, and 8-byte quantities. They also support
floating-point numbers represented as 4° and 8-byte quantities.

The C language supports multiple data formats for both integer and floating
point data. Figure 2.3 shows the number of bytes typically allocated for different C
data types. (We discuss the relation between what is guaranteed by the C standard
versus Jhat is typical in Section'2.2.) The exa~t numbers of bytes for some data
types ctepends on how the program is' comflilea. ·we show sizes for typical 32.-8it
and 64-bit progra'nis. Integer data can be either sig'neli, able to represent negative;
zero, and positive values, or unsigned, only allowing nonnegative values. Data
type char represents a single byte. Although the name char derives from the fact
that it is used to store a single character in a text string, it can also be used to st~re
integer values. Data types short, int, and long are intended-to provide a range of

C declaration Bytes

Signed Unsigned 32-bit 64-bit

[signed] char 1J.D.S igned char } 1
short . ~signed short 2 2
in~ vnsigned 4 4

long unsigned long 4 8
int32_t uint32_t 4 4

int64_t uint64_t 8 8

char'* 4 g.
float 4 4 "
double 8 8

Figure 2.3 Typical sizes (in bytes) of basic Cdata types. The number elf bytes allocated
varies with·how the program is compiled. This chart shows ihe values typiqil of 32-bit,
and 64-bit programs.

• ~ .,
' '
\

•
~
l

"

I
\
'

)

Section 2.1 Information Storage lll

~ ~-~',;, • ..,_.,,,.,9'0 ~ ·~'ff""'~----''t'"-'.~1''1'1!!"~~ ¥ ~--....~";'""_'_ ~

! '.Jl;lt:~. t~ <:_7 De,clarfnsipqinter~ , ..•
1 For any data type T, the declaration

''-!i,

indicates that pJs a·pointer variable, pointing to an object of type T. For example,
,!;, ' "'" "I I.~ ~! .,_ ~ .. :;,... ,p

chai; *P ;~~

is the declaration of a pointer Jo' an object of type char.
' -----·-----~--------~ '""'"''"""""""'"'"'''''i'"";o/l""--... ----,,...,.,.,,_.,.~,,.,. .• -,,,....,..,.....J--...."

sizes. Even when compiled for 64-bit systems, data type int is usually just 4 bytes.
Data type long commonly has 4 bytes in 32-bit programs and 8 bytes in 64-bit
programs.

To avoid the vagaries of relying on "typical" sizes and diffi:rent compiler set
tings, ISO C99 introduced a class of data types where the data sizes are fixed
regardless of compiler and machine settings. Among these are data types int32_ t
and int64_ t, having exactly 4 and 8 bytes, respectively. Using fixed-size integer
types is the best way for programmers to have close control over data represen
tations.

Most of the data types encode signed values, unless prefixed by the keyword
unsigned or using the specific unsigned declaration for fixed-size data types. The
exception to this is data type char. Although most compilers and machines treat
these as signed data, the Cstandard does not guarantee this. Instead, as indicated
by the square brackets, the programmer should use the declaration signed char
to guarantee a l'byte signed value. In many contexts,)lowever, the program's
behavior is insensitive to whether data type char is signed or unsigned.

The C language allows a variety of ways. to order .\he keywords and to include
or omit optional keywords. As· exa!"ples1 all· of the following declarations have
identical meaning:

unsigned long

unsigned long int

long unsigned

long unsigned int

We will consistently use the forms found in Figure 2.3.
Figure 2.3 also shows that a pointer (e.g., a variable declared as being of

type char •) uses the full word size of the program. Most machin~s also support
two different floating-point formats: single precision, declared in C as float,
and double precision, declared in C as double. These formats use 4 and 8 bytes,
respectively.

Programmers should strive to make their programs portable actoss different
machines and compilers. One aspect of portability is to make the-program insensi
tive to the exact sizes of the different data types. The C standards set lower bounds

- ---~- ---- - -m"'~':..= ~- ~ -·---- --- •• ----------- • •

42 Chapter 2 Representing and Manipulating Information

on the numeric ranges of the different data types, as will be covered later, but there
are no upper bounds (except with the fixed-size types). With 32-bit machines and
32-bit programs being the dominant combination froJ!l aroun,d 1980 until around
2010, many programs have been written assuming the allocations listed for 32-
bit programs in Figure 2.3. With the transition to 64-bit machines, many hidden
word size dependencies have arisen as bugs in migrating these programs to new
machines. For example, many programmers historically assumed that an object
declared as type int could be used to store a pointer. This works fine for most
32-bit programs, but it leads to problems for 64-bit programs.

2.1.3 Addressing ·and Byte Ordering

For program objects that span multiple bytes, we must establish two conventions:
what the address of the object will be, and how we will order the bytes in memory.
In virtually all machines, a multi-byte object is stored as a contiguous sequence
of bytes, with the address of the object given \>y the smallest address of the bytes
used. For example;suppose a variable x of type int has address Ox100; that is; the
value of the address expression &xis Ox100. Then (assuming data type int has a
32°bit representation) the-4 bytes of x would be stored in memory locations Ox100,
Ox101, 011:102; and Ox103.

For ordering the bytes representing an object, there are two common conven
tions. Consider aw-bit integer having a bit representation [xw-1• Xw-2• ... , x1.·xo].
where xw-l is the most significant bii and x0 is the least. Assumjng w is a multiple
of 8, these bits can be grouped as bytes, with the most"significant byte having bits
[xw-lo xw_2, ... , xw-s], the least significant byte having bits [x7, x6, ... , xo]. and
the other bytes having bits from the middle. Some machines choose to store the ob
ject in memory ordered from least significant byte to most, while other machines
store them from most tb least. The former convention-where the least significant
byte comes first-is·referred to as litt/e:endian. The latter convention~where the
most significant byte comes first-is'\-eferred•to as big endian'.

Suppose the variable x of type int and at address Ox100 ha~ a hexadecimal
value of Ox01234567. The ordering of the bytes within the address range Ox100
through Ox103 depends on the type of machine:

Big endian
Ox100 Ox102 Ox103

Little endian
, Ox190 Ox~pl Ox102 .,Ox103

Note that in the word Ox01234567 the high-order byte has hexadecimal value
Ox01,while the-low-order byte has value Ox67.

Most Intel-compatible machines operate exclusively in little-endian mode. On
the other hand, most machines from IBM and O~acle (arising from their acquisi-

i
~
\
'

.,

Section 2.1 Information Storage 43

f" - --~ - .. .,,.,,,,.,,, --- "'l:

! A~ldti, Origin qi "endian" ,

t·Here is fiow Jonathan Swift, writing in 1726: described the history of the controversy between big and

I little endiahs: "
l' l.

_

1

1 ... Lilliput ap.d Blefuscu ... have, as I was going to tell you, been engaged in a most obstinate war
"· for six>and-thirty inoons.past. It began upon the following occasion. It is allowed on all hands, that

the primitive way of breaking eggs, before we eat them, was upon the larger end; but his present

I
' majesty's grandfather, while he was a boy, going to eat an egg, and breaking.it according to the

nap,cient practice, happened to·cut one of his finger$. Whereupon the emp6ror his father published
!
1
• an edict, commanding all his subjects, upon great penalties, to break the smaller end of their eggs .

• The people so highly resented this law,Jhat our histories tell us, there nave been six rebellions raised
f on that account; Wherein one emperor lost his life. and another his crown. These civil commotions

were constantly fomented by the monarchs of Blefuscu; and when they were.quelled, the exiles
always fled for refuge to that empire. It is computed that eleven thousand persons have at several

: times suffered death, rather than submit to break their eggs at the smaller end. Many hundred
I •large volumes have be~n-ptlblished upon this controversy: but the books of the Big-endians have
I been long fOrbidden, ana the whole party rendered incapable by law of holping employments. ! (Jonathan Swift. Gulliver:S Travels, Benjamin Motte,'1726'.) ~

I In his day, Swift was satirizing the continued confli~ts,between Englap,d (Lilliput) ?ndFrance (Blefuscu).
Danny C?h,~n, an ,early pion.eer in networking protoc;,Ols, first applied, th~se te.rms to refer to byte

1
ordering [24], and the terminology has b.een.widely adopted.

' - ..

tion of Sun Microsystems in 2010) operate in big-endian mode. Note that we said
"most." The conventions do not split precisely along corporate boundaries. For
example, both IBM and Oracle manufacture machines that use Intel-compatible
processors and hence are little endian. Many recent microprocessor chips are
bi-endian, meaning that they can be configured to operate as either little- or
big-endian machines. In practice, however, byte ordering becomes fixed once a
particular operating system is chosen. For example, ARM microprocessors, used
in many cell phones, have hardware that can operate in either little- or big-endian
mode, but the two most common operating systems for these chips-Android
(from Google) and IOS (from Apple)---0perate only in little-endian mode.

People get surprisingly emotional about which byte ordering is the proper one.
In fact, the terms "little endian" and "big endian" come from the book Gulliver's
Travels by Jonathan Swift, where two warring factions could not agree as to how a
soft-boiled egg should be opened-by the little end or by the big. Just like the egg
issue, there is'no technological reason to choose one byte ordering convention over
the other, and hence the arguments degenerate into bickering about sociopolitical
issues. As long as one of the conventions is selected and adhered to consistently,
the choice is arbitrary.

For most application programmers, the byte orderings used by their machines
are totally invisible; programs compiled for either class of machine give identi
cal results. At times, however, byte ordering becomes an issue. The first is when

44 Chapter 2 Representing and Manipulating Information

binary data are communicated over a network between different machines, A
common problem is for. data produced by a little-endian machine to be sent to
a big-endian machine, or vice versa, leading to the bytes within the words being
in reverse order for the receiving program. To avoid such problems, code written
for networking applications must follow established conventions for byte order
ing to make sure the sending machine converts its internal representation to the
network standard, while the receiving machine converts the network standard'to
its internal representation. We will see examples of these conversions in Chap-
ter 11. ~

A second case where byte .ordering becomes important •is when looking at
the byte sequences representing integer data. This.occurs often when inspecting
machine-level programs. As an example, the following line occurs in a. file that
gives a text representation of the machine-level code for an Intel x86-64 processor:

4004d3: 01 05 43 Ob 20 00 add %eax,Ox200b43(%rip)

This line was generated by a disassembler, a tool thaw:letermines the instruction
sequence represented by an executable program file. We will learn more about
disassemblers and how to interpret lines such as this in Chapter 3.- For now, we
simply note that this line states that the hexadecimal byte sequence 01 05 43 Ob
20 00 is the byte-level representation of an instruction that adds a word of data
to the value stored at an address computed by adding Ox200b43 to the current
value of the program counter, the address of the next instruction to be executed.
If we take the final 4 bytes of the sequence 43 Ob 20 00 and write them in reverse
order, we have 00 20 Ob 43. Dropping the leading 0, we have the value Ox200b43,
the numeric value written on the right. Having. bytes appear· {n, reverse order
is a common occurrence when reading machine-level program representations
generated for little-endian machines such as this one. The natural way to ,write a
byte sequence is to have the lowest-numbered byte on the left and the highest on
the right, but this is contrary to the normal way of writing numbers with the most
significant digit on the left and the least on the right.

A third case where byte ordering becomes ·visible is when· programs are
written that circumvent the normal type system. In the C language, this:can.be
done using a cast or a union to allow an object to be referenced according to
a different· data type lfrdm which it was created. Such• i:oding·tricks are strongly
discouraged for most application programming, but they can be quite useful and
everi necessary fop system-level programming.

Figure 2.4 shows C code •that uses casting to access and print the byte rep
resentations of different program objects. We use typedef .to define data type
byte_pointer as.a pointer to an object of type unsigned char. Such a byte pointer
references a sequence of bytes where each byte is co,nsidered to be a nonnega
tive integer. The first routine shw-'-bytes is given the address of a sequence of
bytes, indicated by a byte pointer, and a byte count. The byte count is specified as
having data type size_t, the preferred data type for.expressing the sizes of data
structures. It prints the individual.bytes in hexadecimal. The C formatting direc
tive % . 2x indicates that an integer should be printed in hexadecimal with at least
2 digits.

#include <stdio.h>
2

3 typedef unsigned char *byte_pointer;
4

5 void show_bytes(byte_pointer start, size_t len) {
6 int i;
7 for (i = O; i < len; i++)
8 printf(" %.2x", start[i]);
9 printf(11 \n 11

);

10 }

11

12 void show_int(int .x), {
13 show_bytes((byte_pointer) &x, sizeof(int));
14 }

lS

16 void show_float(float x) {

17 show_bytes((byte_pointer) &x, sizeof(float)·);
18 }

19

20 void show_pointer(void •x) {
21 show_bytes((byte_pointet) &x, sizeof(void •));
22 }

Section 2.1 Information Storage 45

Figure 2.4 Code to print the byte representation of program objects. This code
uses casting to circumvent the type system. Similar functions are easily defined for other
data types.

Procedures show_int, show_float, and show_pointer demonstrate how to
use procedure show_bytes to print the byte representations of C'program objects
of type int, float, and void ~;·respectively. Obs~rve•that they simply pass sh6w_
bytes a pointer &x to their argument x, castiqg the_pointer to be of type unsigned
ch.:r •.This cast indicates to the. c"bmpiler thai tJil!·p~ogram sho.4Id consider the
pointer to be to asequence of bytes rather than to" an object ot'the original data
type. This pointer will then be to the lowest

0

\Jyte address occupied by the object.
These proce,dures use \he C s~zepf operator tq del,ermine the nµmber ofbY.tes

used by the object. In general, the expression s~zeof (T) returns the number ,of
bytes require~ t\) store an object of type ;r. \Ising si~e~f ;pther th31n a fixed xalue
is one st-;p t9w,ard 'Yfj!ip.g code that is.imrtable acrqss .~ifferynt z,nachine,\yp\'s.

We rai;i tJt~ cqde sh,9wn.in Fig\ire·2.5 oi;i.~e}\yral di.fferent m~chines, giving the
results sJ;lo"(n in.Figl\f,e i2.6. The following mi'l'Jlinefi were used:

Linux 3:i
Windqw~

Sun

Linux 64

l'. ' Intel IAJ2 processor runnillg Linux.
, It ,

Intel IA;32 processor i;u,nning Wind9wfi. , 1
Sun Microsystems SPARC processor running Solaris. (These machines

are now produced by Oracle.) ·'
Intel x86-64 processor running Linux.

n ----co ____ --=--~"·-··

46 Chapter 2 Representing and Manipulating Information

------------------------ code/data/show-bytes.c

void test_shoW_bytes(int val) {
2 int ival = val;
3 float fval = (float) ival;
4 int •pval = &ivaif
5 show_int(ival);
6 show_float(fval);
7

8 }

show_pointer(pval);
-,

------------------------ code/data/show-byte&c

Figure 2.5 Byte representation examples. This code prints the' byte represen(ations
of sample data objects.

'"
Machine Value ~pe Bytes (hex)

Linux32 12.345 iqt 39 30 00 00

Windows 12,345 int 39 ~o oo oo
Sun 12,345 .int 00 00 30 39

Linux 64 12,345 int 39 ;io oo oo

Linux32 12,345.0 float 00 e4 40 46
Windows '12,345.0, float '00 .e4·40 ,46 "
Sun 12,345.0· float 46 41Ye4 00
Linux64 12,345.0 float 00 e4 40 46

Linux.32 &ival int* e4 f9 ff bf

Win<jpws &ival int* ,b4 cc 22 00

Sun &iva~ int.* ef ff fa Oc

Livux64 &ival int~:t:~1 ·b8 11 e.5 ff ff 7f 00 00

Figure ~.6 Byte representatio[l~ of different data '!alues. Results for int and float
are id~ntical, except for byte ordering. Pqinter values are machine d~penCtent.

Our argument 12;345 has hexadecimal representation OxOOOb3039. For the int
data, we get identical results for all machilles, e'xcept for the byte ordering. In
partfoular, we'can see that the least significant byte value of Ox39 is·printed first
for Linux 32, Windows, and Linux 64, indicating little-endian machines, and last
for Sun, indicating a big-endian machine. Similarly, the bytes of th'e float data
are identical, except for the byte ortlering. On the other hand,"thep'binter values
are completely different. The different µiachine/operating system configurations
use different conventions for storage ~lloca:tion. One feature to note is that the
Linux 32, Windows, and Sun machines use 4-byte addresses, while the Linux 64
machine uses 8-byte addresses. 1

Section 2.1 Information Storage 47

! New to C? Naming data typeswith typedef

I The typedef declaration in ~ prqvides a way of giving a name to a dataJype. This can be a great help
i in improving code readability, since deeply nested type declarations can be difficult to decipher.,
l The syntax for typedef is exactly like that of declaring a variable, except that it uses a type name
i rather than a variable name. Thus, the declaration ofbyte_pointer in figure 2.4 has the sam,e.form as

the declaration of a variable.of type unsigned char_'>.
For example, the declaration

typedef int •int_pointer;
t int_pointer ipi

defines type int_pointer to be a pointer to an int, aJld declares a variable ip of this type. Altematfvely,
I we could declare this variable directly as '
I ,. ,
l int •ip;
~' ..- -·- -~ - '1M --- --- ~-··"'·.,...

- ..,...,..,. -------.... ~-""'l:;w··~~--~ 'fi',; -·-· /ff.

New to C? Formatted printing with printf

The priritf'function (along with its cousins t"printf and sprintf) provides a way to print information
with considerable control;over"the formatting details. The first argument is a Jormat string, while any
remaining arguments are values to be printed. Within the format string, each c)laracter sequence
starting with '%' indicates how to format" the next argument. Typical examples in~lude %d to print a
dec_imal integer, %f to print a floating-point numper, and %c to print a character having the character
code given by the argument.

Specifying the formatting, of fixed-size d~ta types, such as int_32t, is a•bit more involved, a~ i~
describectfu. the aside on page 67.

Observe that although the floating-point and the integer data both encode
the numeric value 12,345, they have very different byte patterns: Ox00003039
for the integer and Ox4640E400 for floating point. In general, these two formats
use different encoding schemes. If we expand these hexadecimal patterns into
binary form and shift them appropriately, we find a sequence of 13 matching bits,
indicated by a sequence of asterisks, as follows:

0 0 0 0 3 0 3 9
00000000000000000011000000111001

4 6 4 0 E 4 0 0

01000110010000001110010000000000

This is not coincidental. We will return to this example when we study floating
point formats.

r
I
f
I
!

i ,,

48 Chapter 2 Representing and Manipulating Information

New to <:7 Pointers.arid ?rrays

' Iµ'fimction'shOw~bJ!:tes tF!gure-214), "[e see•Jh<!,.close'cotlne9,tipµ betwe~1j'point1!rs ah<1array~' as,w[l!
be discussed in detail in Section·:J:8. We\S<!e'that•t!Jis functio11'1tas'an'argument's'tart of.type'bJ'te_
pointe>; (which' has been:defined,'to b~.:! poinfer.tb:dns.;l~e'd' chaf),'Qut''we·;ee'the acyay refer.ence
staI''t t~1"'0n line 8. lll'l=,'yle'!:Al],'depJferensef a p§ihter:,Yjth arrafnotation, and. we·eart reference'ai;ray
elements with pointer notailon. In this example; the•reference start [i] inafoates tharwe want to reaa
th~•byte that is· i posifions beyonct'!he lbcatfon 'pointe1itciJ>~'ital;t, • ,. r ~ " ·

r;.~;:, .;;·ti :po]i;"'~;·fre;tibn •anif ~;;~;eten.cih~~:-·--i' ·• ·:, -.. :· .. ,- · ;-: · "'· ·,, ~·-· ·;:w~ · !
., ~ ~ '¢'. ·~ ""1, ··~ "t .

In lines 13, 17, and 21 of Figure 2.4 we see.uses'Of two oper\lgons that.give C (and therefore Ci'+) its·1
~ distinctive character. The£ ·~ddress o~!' opera.tor·~· .crea!~s a P'?!fit~r.~If.ah.threellneS, t~e expf~ssion ·.

&x creates a pointer to: the locati.oh holding the. opject i\ldicateq tiyvarjably x. Tl).e type'of this.pointe(1
•depends on the tyPe of•x;and hen~ these thiee pointers'are"ofotype•int *',float~. and void"i<*', !

respectively, (Data type void • i~ 3' special kind olpoi~te~ will\ n~ ass~cfate)l type)nformation.) . l
The cast operator converts from, one data. type to:a:fiotll1't. Tiiils,• .the C"as!"Cllyte'_po'inter) ·&x 1

iad[c~,\e~ that. ~h. a~eye~,t,ype JIJ~·J?i'lint~i; &11 .ha~." b.efo. r~, tho;. pr1i,g. ra. m .vjll V°'Y, r.efere_nce '.'. po .. ins~r tp, j .. ·
~ data qftype,unsj.gned ch'4i. !h~ casts shown hen; dq.nof change,th,e 11ct~al pomter; th,'ii''Sp!PlY, d1rect j
t th~ ~~piler:,?~fe,~t~ ~::~~:.~~in~~poin~~~=~~c~:~d~:~~ ~~~:~Re~~~~~= ~~~,,~-·~~~~-:~~,~-J.J

~ "'" ~ .. ~""' "" .• ~ .,,.. '"' ~ ~ ~, >!' """''"""""· '"!o'-~ _.,,. .._,,,_""",..~J--ryr""'"f'"-~-~-~

Aside Generating anA;>Cli,table ,,, I
Yo.: ca~ a_isplay a ta~le~h~.wi~g ~h~ A~~U~.~~r.a~~,~~~:~; e:~~~~g~the :~~:~~~; ~~i~··· ..

l!'!<iUfi:'.'e;tlS!i'1ttttf'~~~~~,:t:zw;1k~l~t~~~.'ib~
Consider the following three· calls to show _bytes:

int val k Ox87654321;
byte_pointer valp = (byte_pointef) &val;
show_bytes(valp, 1); /•A. •/
show_bytes(valp, 2); /• B. •/
show_bytes(valp, 3); /• C. •! ..

Indicate the values that will be printed by each call on a little-endian machine
and on a big-endian machine:

A. Little endian: ___ _ Big endian: __ _

B. Little endian: ___ _ Big endian: ____ _

C. Little endian: ___ _ Big endian:

Section. 2.1 Information Storage 49

tttt~&te~liiJl1lltflrilli' i!lfifl~,mB
' Using show_int and show_float, we determine that theinteger 3510593 has hexa-

decimal representation Ox00359141, while the floating-point number 3510593.0
has hexadecimal representation Ox4A564S~.

A. Write the binary represen\ations of these two hexadecimal values.

B. Shift these two strings relative to one another. to maximize the number of
matching bits. How many bits match?

C. What parts of the strings do not match?
' ,

2.1.4 Representing Strings

A string in e is encoded by an array of characters terminated by the null (having
value O) character. Each character is represented by some standard encoding, with
the most common being the ASCII char,a~ter code. Thus, if we run our routine
show _bytes with arguments "12345" and 6 (to include the terminating character),
wegettheresult3132 33 34 35 00.0bservethattheASCIIcodefordecimaldigit
x happens to be Ox3x·, and that t(le terminating byte has the hex representation
OxOO. This same result would be obtained on any system using ASCII as its· '
character code, independent of the byte ordering and word size conventions. As
a consequence, text data are more platform independent than binary data.

What wiiild !)e prm't~d as a result of the ~<;>}lowing call to show_byt~s?

const char *S = 11 abcdef"i
show_bytes((byte_pointer) s, strlentsJ);

,
Note that letters 'a':through 'z' have ASCII codes Ox61 through Ox7A.

2. 1.5 Representing Code

Consider the following C function:

1 int sum(int x. int y) {

2 return x + Yi
3 }

"

When compiled on our s,ample machines, we generate machine code having
the following byte representations:

Linux32

\Yin~ows
Sun

Linux64

55 89 e5 8b 45 Oc 03 45"08 c9 c3 ,
55 89 e5, ?b 45 Oc 03 45 Q8 5d c3
81 .c;.3 eo 98 ~o 02 90 09
55 48 89 e5 89 7d fc 89 75 f8 03 45 fc c9 c3

" l

"

(-.
!
l
I

' I
I

I
I

---- --- .. ~~

50 Chapter 2 Representing and Manipulating Information

.,,,,,,,,,,,_._..,,,,,,,,. __ _,,,,.,_, W""":"'f!"''-'" ~ ·~"" f,., 'k
, Aside The UniC<;icje,stanc;lardJprte~t encpdin\1 . % •

4. 'The ASCII charac;e:.seiis.:suita)>1~'.for,eJt~o~ing'~~~f~~,JJ;i~ge .iio~dm~:!;,:qut.i\:do~ n.,~F hpv~, j
, inuch'in th~ way,6f sp~gal ch'ara9ter~ suc!J,_'",s•the 1're,?c~_(f·~~~s,,~h~~ly :li~l;ui~~ f0r encoding j
1

. documents m lan11uages such as Greek, •Russrnn;•and Ch1pese .• 0ver !he years; .• 'i\ vanety·'Of methods ·,
'have been cleveloped to encode texi'Mr .. d{ff~\'J\r !~µgua'ges~"{\i~~P»illba~;ccin~brtifun'h.~s ;{evis~d th~
most comprehensi{>e'and witlel:{acc'e~le<!:Standar,d•for,eneoding text.11Jie current·UnicOde ~tandard l

' '..(versiqn 7 .0) has ~ repert?ire of over 100:000· cM'ra~t~rs suppprliil,g.a,:wide raij'ge·of!angUltges, 'irlc,l,\uling, I
the ancient la~guages _of Egyp.t ancl B'ab~f(J~· 1:?Jh6ii; ~e~i~~.!1le,J.Jpi9;~cl.~l~~c~l. 9PC1ll'M!f r reject_';d
:i,proposa.l to msl];!de'astanpard wnt1ng fo~KhnJlon1 a1ict10pal cmhzalto!J;.fromJhe,telev1s1on senes

I' ,:,tar Trek.
0

• • ~ • *. -1,,, • • _ '""

1 . The b'lse enc0,cling, known as.~qe "Univ_ef%~l'Clt:"~~-ter:5i~t"'<if l(n\f;ll~~· JI}~·.~ 3,2-b.i! reJ'~esen,fa- J
!ton of characters. TJus :.vould seem.to i;.eq1!1re eve~y sttmg',of text to consist ofjfbytes,Jlei; chai;acte~« '
fl.owevpr, alternatiye codings.are possible where comhlo11 charac}l!rs.requ[re.just'1 qt 2;,by)es, while.,.
less common ones requirecmore.In]larticul~tl thb~~S"tepfe'lien,tation'encodes each'.chara1::ter as a
s:~uen!"' of.bytes, su~h that.th~.stlt~dard;Asqn fqa:act:~s:u!~ .. t.he s,.l~€ sfogle,byte encodings as th~tj
,have m; ASCII, implying that.al) ASC!j' liyte se51uences,h,ave,t,he same m<l'anmg m·U'IF"'S as:they>do m· ··.
ASCII. ' 't, ,.;;.~ ill,~ , '- t:~~ .-~· ""'"" .. ~--~ ~ .,,..., #tt· "" ~ J/I

:J:he J~vA p~bgiaITnt)i,~g langua'.ge)ises l:{nicod~ 41(its 'repies,entations ots'lfings.:Program libraries
ai;e also available for C to support Umoode. • , • .., • .1t' ... ~, ' •• •

~.,,,,.,,,,,,,,.,,. ~ ... ,.,,;... --,, ~J ~--·'-•-·-'""'--'-"""":.,....i;...~--.. 1·•·-'"'""-~~----·"'"'"-'

Here we find that the instruction codings are different. Different machine types
use different and incompatible instructions and encoding& Even identical proces
sors running different operating systems have differences in their coding conven
tions and hence are not binary compatible. Binary code is seldom portable across
different combinations of machine and operating system.

A fundamental concept of computer systems is that a program, from the
perspective of the machine, is simplfa sequence of bytes. The machine has no
information about the original source program, except perhaps some auxiliary
tables maintained to aid in debugging. We will see this more clearly when we study
machine-level programming in Chapter 3.

2.1.6 Introduction to Boolean Algebra

Since binary values are at the core of how computers encode, stpre, and manipu
late information, a rich body of mathematical knowledge has evolved around the
study of the values 0 and 1. This started with the work of George Boole (1815-
1864) around 1850 and thus is known as Boolean algebra. Boole observed that by
encoding logic values TRUE and FALSE as binary values 1 and 0, he could formulate
an algebra that captures the basic principle~ of logical reasoning.

The simplest Boolean algebra is defined over the two-element set (0, 1).
Figure 2.7 defines several operations in tliis algebra. Our symbols for representing
these operations are chosen to match those 'used by the 'c' bit-level operations,

t l
'

0
1

1
0

&

0
1

0 1

0 0
0 1

0
1

0 1

0 1
1 1

0
1

0 1

0 1
1 0

Section 2.1 Information Storage 51

Figure 2.7 Operations of Boolean algebra. Binary values 1 and 0 encode logic values
TRUE and FALSE, while operations-,&, I, and - encode logical operations NOT, AND, OR,

and EXCLUSIVE-OR, respectively.

as will be discussed later. The Boolean operation - corresponds to the logjcal
operation NOT, denoted by the symbol ~. That is, we say that ~P is true when
P is not true, and vice versa. Correspondingly, - p equals 1 when p equals 0, and

0

vice versa. Boolean operation & corresponds to the logical operation AND, denoted
by the symbol /\. We say that P /\ Q holds when both P is true and Q is true.
Correspondingly, p & q equals 1 only when p = 1 and q = 1. Boolean operation
I corresponds to the logical operation OR, denoted by the symbol v. We say that
P v Q holds when either P is true or Q is true. Correspondingly, p I q equals
1 when either p = 1 or q = 1. Boolean operation - corresponds to the logical
operation EXCLUSIVE-OR, denoted by the symbol$. We say that P $ Q holds when
either P is true or Q is true, but not both. Correspondingly, p - q equals 1 when
either p = 1 and q = 0, or p = 0 and q = 1.

Claude Shannon (1916--2001), who later founded the field of information
theory, first made the connection between Boolean algebra and digital logic. In
his 1937 master's thesis, he showed that Boolean algebra could be applied t'o the
design and analysis of networks of electromechanical relays. Although computer
technology has advanced considerably since, Boolean algebra still plays a central
role in the design and analysis of digital systems.

We can extend the four Boolean operations to also operate on bit vectors,
strings of zeros and ones of some fixed length w. We define the operations over bit
vectors according to their applications to the matching elements of the arguments.
Let a and b denote the bit vectors [aw-I> aw-2• ... , ao] and [bw-1> bw-2• ... , bo],
respectively. We define a & b to also be a bit vector of length w, where the ith
element equals a, & b1, for 0::; i < w. The operations I,-, and - are extended to
bit vectors in a similar fashion.

As examples, consider the case where w = 4, and with arguments a = [0110]
and b = [1100]. Then the four operations a & b, a I b, a - b, and -b yield

0110

& 1100

-0100

0110

1100

1110

0110

- 1100

1010

- 1100

0011

fl>)'is.fis~:ero&ie.;'I 2.8 /solution pag~: lili: •'• ' ' ' ' ":; ;,,, : wrnn;·;J
Fill in the following table showing the results of evaluating Boolean operations on
bit vectors.

,~

. ' I

- - -· - ------·-· - . - ----. --- -- - . ~

52 Chapter 2 Representing and Manipulating Information

·~

Web Aside DAT~:BC?Ol· More•dn, Bqolean algebra and Bo?lean rings I
The Boolean operations I, &:, and - operating OI\ bit vectors of length w form a •Boolean algebra, ,

' for any integer 'I!> 0. The,sj!"plest j.•;,;he cas~.::Vh~>r.e w .= 1 \ll'd.t~ere.are•jpst two elements, bµt for
1 the niore general qse th.ere are zw \Ji! vector's of length w. Boolean algebra has·m~ny of JJi; same

' properties as·aritlun'etic over integers.'Fo~ exampl~. ju~i as multiplication distributes ~ov,ei, additio!l. ~
written a· (b + c) =(a ··b) +(a 'c), Booleiinb{'eration& djstributes over I, written a & (b I cY= \a & bH J

• (a & c). ln addition, liowever. Boolean operation I distributes over&, and so we can write a I (b & c) = 1
, (a I b) & (a I c), wh .. reas we can11ot say that a .. + (b · c) =\a +·b). · (a+ c) holdsJ?'.r all integ~rs. ~

,When we cot\sj_der o'p-:rationef-, &, !')ld,:='oper~tin& on 'bit vecto.rs oflength •w, we get a differenf I
m~th~matical fprr:i: knO}"Q as a Boo(ean ring. Bocilean rings haye kanyiptpp~~tie~ in ~binmon with, 1
integer arithmetic. For exam'ple, qn~piopert~ o~ inte~er ~r1$;bmeiic i§~thit ev~IYvalue f~has 8.h ,additive 1
inver,re -x, such that x + -;:'= p. A_timil,ar prop<;r1y h,?lds f~r.J?oolean rin,gs,where - is the "~d,dition" J
operation, but in t~is c~se ~eacb ~e~em~~~!is its ~w? addit~ve, i:t1v~r~e; ~at _is, a - a = 0 f;~i any .~al~e a, : .

, where we use O.here. t'.' n;present a ~:t v. ector o .. f all.z.~rf!,S, \Y<;, can s. ee .this q9lds fo}•smgle bits, smce

1 0 - 0 = 1 - 1 = 0, ancj it e)\tends to b1,t vecior~ a~ we!\. This property hold,s even when;we rearrange t~rms
and combine tl)em in a different order, ancr so (a ~ b J - a = b. ni\s property leads lo som"interestin& I
results and clever trick~, as ;We whl ~xpfort in Pro~lem 2)0. > 1

___ _.. __ ,,.. "'~~--·-"' ,,, ___ _.,_ -, ,,..,,_.,,.--~<I' ,., ----~

Operation Result

a [01101001]
b [01010101]

-a

-b

One useful application of bit vectors is to represent finite sets. We can encode
any subset A~ (0, 1, ... , w - 1) with a bit vector [aw-I• ... , a1, ao]: where a;= 1 if
and only ifi E A. For example, recalling that we write aw-I on the left and a0 on'the
right, bit vector a = [01101001] encodes the set A = (0, 3, 5, 6), while bit vector b =
[01010101]encodes the set B = (0, 2, 4, 6}. With this way of encoding sets, Boolean
operations I and & correspond to set union and intersection, respectively, and -
corresponds to set complement. Continuing our earlier example, the operation
a & b yields bit vector [01000001], while A n B = (0, 6].

We will see the encoding of sets by bit vectors in a number of practical
applications. For example, in Chapter 8, we will see that there are a number of
different signals that can interrupt the execution of a program.:We can selectively
enable or disable different signals by specifying a bit-vector mask, where a 1 irl
bit position i indicates that signal i is enabled and a 0 indicates that it is disabled.
Thus, the mask represents the set of enabled signals.

Section 2. 1 Information Storage 53

re!iid11Rfl!bleliii'ti9¥r4tlbli·Uli5li!il?1~·?a"'Jt:(iii~~arun
Computers ge\lerate color pictm;es on .a ';ideq screen or liqu\i;l crys,tal display
by i;nixing three different colors of ligh\: red, green, and b)ue. I~gin!' a siJP,J?le
scheme, with thre,e differe11t lights, each of which can be tµ,rned on or,off, project
ing, onto a glass screen:

Light sources Glas~ screen

r

Observer

• l

We can.then create eight different colors basedpn the absence (0) onpresence
(1) of light sources R, G, and B:

R G B Color

0 0 0 Black
0 0 1 Blue
0 1 0 Green
0 1 1 Cyan
1 0 0 Red
'i 0 1 Magenta
1 1 a· Yellow
1 1 1 White

'
Each of these colors can be represented as a bit vector of length 3, andl we can
apply Boolean.operations·to.them.

A. The co\npiement of a color is forme1 by turning off the ligqts that a'.re cin,and
turning on the lights that are off. What would be the complement of each of
the eight colors listed above?

B. Describe the effect of applying Boolean operations on the following colors:

Blue I Green =
Yellow & Cyan - ___ _
Red - Magenta = __ _

I
F-==--=---=~-_:··-:.. --- - - ·--:- -
I I

I I

II

'

• '
54 Chapter 2 ·Representing and Manipulating Information

2.1.7 Bit-Level Operations in C

One useful feature of C is that it supports bitwise Boolean operations. In fact, the
symbols we have used for the Boolean operations are exactly those used by C:
I for OR, & for AND, - for NOT, and - for EXCLUSIVE-OR. These can be applied to
any "integral" data type, including all of those listed in Figure 2.3. Here are .some
examples of expression evaluation for data type char:

C expression Binary expression Binary result Hexadecimal result

-Ox41 -[0100 0001] [10111110] OxBE

-OxOO -[0000 0000] [11111111] OxFF

Ox69 & Ox55 [0110 1001] & [0101 0101] [0100 0001] Ox41

Ox69 I Ox55 [0110 1001] l [0101 0101] [01111101] Ox7D

As our examples show, the best way to determine the effect of a bit-level ex
pression is to expand the hdadecimal arguments to their binary representations,
perform the operations in binary, and then convert back to hexadecimal.

lfiliiiiiffiesJ?£~il~tAA:;B>1<i1!tuirs.m~9'tiltttf,t;JA~?:.:r.:m
As an a!lplicatlon of the property tliat a• - a = 0 for an'y bit vector a, consider the
following program:

void inplace_swap(int •x, int •y) {

2 *Y = *X ""' *Yi /• Step 1 •I
3 •x •x - *Yi /• Step 2 •/
4 *Y = *X *Yi I• Step 3 •I
5 }

As the name implies, we claim that the effect of this procedure is to swap
the values stored at the locations denoted by pointer variables x and y. Note
that unlike the usual technique for swapping two values, we do not need a third
location to temporarily store one value while we are moving the other. There is
no performance advantage to this way of swapping; it is merely an intellectual
amusement.

Starting with values a and bin the locations pointed to by x and y, respectively,
fill in the table that follows, giving the values stored at the two locations after each
step of the procedure. Use the properties of - to show that the desired effect is
achieved. Recall ,that every element is its own additive inverse (that i~, a - a= 0).

Step •x •y '\•

Inltially " b a

Step 1
Step2 ---
Step 3

-' .,

' ~
.,

Section 2.1 Information Storage SS

ljifJiflt'@co1)1¢iii%2*1 ffi'Oi\ttrfiliil\a\k~iif~f}-,.:lt'l•,~ij(!& '.!:>2'?;:;-i}J:.,.,N,ij
Armed with the function inp~ace_swap from Problem 2.10, you1d\icide to write
code that will reverse the elements of an array by swapping elements from opposite
ends of the array, working toward the middle.

You arrive at the following function:

,1 void .rev~rse_artay(int a[] 1 ·int cn:t) {
2 int first, lastj
3 for (first;. ~ 0 1 last ·= cnt-1;

•4

5,

6

7 }

first <= last i
firs:~++ ,last--)
inplace_swap(&a[first], &a[1ast]);

When you apply your function to an array containiiig elements 1, 2, 3, dnd 4,
you find the array now b,as, as ex,11ecte~1• ~l~ments 4, ~;2, 'and i. When you try it
on an array with elements 1, 2

1
3, 4, ahd 5, however, you are surpriSed io see that

the arr~y riow has e'iem'ents S, 4, o; 2, an'd .1. In fact, you discover tliA'r tJ\e code
always works correctly on arrays of even length, but it sets the middle element to
0 whenever the array has odd length.

C1. •
A. For an array of odd length cnt = 2k + 1, what are the values of variables

first and last in the final iteration of function reverse_array?

B. Why does this call to function inplace_swap set the array element to O?

C. What simple modificaticln to the code for reverse_array would' eliminate
this problem?

One common use of bit-level operations is to implement masking operations,
where a mask is a bit pattern that indicates a selected set of bits within a word. As
an example, the mask OxFF (having ones for the least-significant 8 bits) indicates
the low-order byte of a word. The bit-level operation· x & OxFF yields a value
consisting of the least significant byte of x, but with all other bytes set to"O. For
example, with x = Ox89ABCDEF, the expression would yield OxOOOOOOEF. The
expression -0 will yield a mask of all ones, regardless of the size of the data
representation. The same mask can be written OxFFFFFFFF when data type int is
32 bits, but it would not be as portable.

fiiia@f,g~f[2h1filil:2i'i 2.ili@fi~l~D~~~!'!l:;r&~;;f<.:~'.!~~j
Write C expressions, in terms of variable x, for tile following values: Your code
should work for any word'!iize w :"'. 8. For-reference, we show the result of evalu
ating the expressions for x = Ox87654321,-with w = 32.

A. The least significant byte of x, with all oth~r bits set to 0. [oxoooooo2ii

B. All but the least significant byte-of x complemented, wi~h.the least significant
byte left unchanged. [Ox789ABC21]

56 Chapter 2 Representing and Manipulating Information

C. The least significant byte set to ·all ones, and all other bytes of x left ,un
changed. [Ox876543J;F]

The Digital Equipment VAX computer was a very popular machine from the late
1970s until the late 1980s. Rather than instructions for Boolean operations AND
and OR, it had instructions bis (bit set) and bic (bit clear). Both instructions take
a data word x and a mask word m. They generate a result z consisting of the bits of
x modified according to the bits of m. With bis, the modification involves setting
z to 1 aJ each bit position where mis 1. With bic, the modification involves setting
z to 0 at each bit position where mis 1.

To see how these operations relate to the C bit-level operations, assume we
have functions bi~ and bic implementing the bit set and bit clear operations, and
\hat we want to use these to,iinplement'functions computing bitwise operatio/{8 I
and - , without using any other C operations. Fill in the missing code below. Hint:

1 • r•·" ~··1
Write c' expressions for the operations bis and bi"c. '

, ' L

I* Declarations of functions implementing operat~ons bis and bic */
int bis(int x, int m);
int bic(int x, int m);

/* Comp~te xly using only calls to ~unctions bis and bic ,*/
int bool_or(int x, int y) {

int result = ___ _

return result;
}

l

/• Compute x-y using o,n1y c~lhs
int bool_xor(int ~x; in:t y)· {

:i,nt· result =

return result;

}. "

2.1.8 Logical Operations in C

"
" to functions bis and bic */

C also provides.a set of logical operators 11, &&, and ! , which correspond to the
OR, AND, and NO,T operations of logic. These can easily· be confused with the bit
level operations, but their behavior is qui!e different. The logical operations tre~t
any nonzero argument as representing TRUE and argument 0 as representing FALSE.
They return eith'er 1 or 0, itl.didtillg 'a result of eitherTRUE oi' FALSE,' respectively.
Here are some examples of expression evaluation:

,Section 2.1 Information Storage 57

Expression Result

!Ox41 OxOO
!OxOO OxOl
! !Ox41 Ox01
Ox69 &II: Ox55 OxOl
Ox69 11 Ox55 OxOl

Observe that a pitwise operati0n will have behavior matching that of its logical
counterpart only in the special case in. which the arguments are restricted to 0
or 1.

A second important distinction between the logical operators '&II:' and '11'
versus their bit-level counterparts '&'and 'I' is that the logical operators do not
evaluate their second argument if t,he result of the expression can be determined
by evaluating the first argument. Thus, for example, the, expression a && 5/a will
never cause a division by zero, and the exNession p && *p++ will ,never cause the
dereferencing of a null pointer.

I '

fiffiatl'-'i'PoomllEftiiliWtliifltltflUti'.'J2tnt:W;sim.;m
Suppose that x and y have b~te 'values OxG6 and Ox39, resp~ctively. Fill in the
following table indicating the byte values of the different C expressions:

Expression Value Expression Value "
x&y J x&&y ---- ----
xly ---- x 11 y
·x I ·y ---,- !x 11 !y ---
x &.!y x && -y

f

rU.;J~ticmlliW!2'iSWBW1it~~milil1'i::4m;··~~;:J.&G
Using only bit-level and logical operations, write a C expression that is equivalent
to x ~~ y. In other words, it will return 1 when x and y are equal and 0 otherwise.

2, 1.9 .Shift>Operations in :.G:·
, , rt • I • .)

C al~o ,Provides a se~9f shift pp,eratjqn§ for shi~tjn_g bit patte~ns to the left and',\o
the right. For an operand x having bit representation [xw-1> xw_2 , .•• ,. xo], the C
expression x « k yiel\ls a value with bit representation [xw-k-1• Xw-k-2• ... , xo,
0, ... , 01 Tiiat is, x is shifte~ k bits to the left, dropping off the k most significant
bits and filling the right end with k zeros. The shift amount should be a value
betwei:n 0 an'd w - 1. Shift operations associate from left to righ_t, so :i<''<< j « k
is equival~nt to (x « j) « k.

There is a corresponding right shift operation, written in C as x » k, but it has
a slightly subtle behavior. Generally, machines support two forms of right shift:

' ' '

' ..

I
1.

I
I
'

--·· -- - -'

58 Chapter 2 Representing and Manipulating Information

Logical. A logical right shift fills the left end with k zeros, giving a result
(0, ... , 0, Xw-1' Xw-2• ... xd.

Arithmetic. An arithmetic right shift fills the left end with k repetitions of the
most significant bit, giving a result [xw-1' ... , Xw-1' Xw-1' Xw-2• ... xd.
This convention might seem peculiar,, but as we will see, it is useful fm
operating on signed integer data.

As-examples, the following. table shows·the effect of applying the. different
shift operations to two different values'.Of.an ll-bit argument x:

Operation Value} _ Value~ ..
Argument x [01100011] [10010101]
x << 4' [OOH.0000] [OlOlOOQO]
x » 4'(1ogical) [00000110] ;[06"0o'10011
x » 4 (arithmetic) [00000110] [11111001]

The italicized digits indicate the values that fill the right (left shift) or left (right
shift) ends. Observe that all but one entry involves filling with zero& The exception
is the case of si)ifting [10010101] rig)lt arithmetically, $ince its most significant bit
is 1, this will be used as tJw fill value. · :

The C standards do not precisely define which type of right shift should be
used with signed numbers~ither arithme\ic·or logical shifts may be used. Thi$
unfortunately means that any code assuming one form or the other will potentially
encounter portability problems. In practice; however, ahnost all compiler/machine
combinations use arithmetic right shifts for signed data, and many programmers
assume this to be the case. For unsigned data, on the other hand, right shifts must
be logical.

In contrast to C, Java has a precise definition of how right shifts should be
performed. The expression x » k spjfts x arithmetically by k positions, .while
x »> k shifts it logically. '

"
lPffi~j:j~£i61fSDQ':j'.i~~O~~~if·~~;:£S
Fill in the table below showing the effects of the different shift operations on single
byte quantities. The best way to think about shift operations is to '}'Ork< with binar)'
representations. Convert the initial values to. binary, {'eFform the shifts, and then
7onvert back' to hexadecill,lal. pa'ch of the ariswers shoi.tld be 8 Binary digit~ or 2
hexadecimal digits. r

Hex

OxC3
Ox75
Ox87·
Ox66

x x << 3

Bjnary .Binary

Logi~al
x >> 2

Binary Hex

Ariihmetic
x >> f

Hex

''

Section 2.2 Integer Representations 59

ill~ "'"""'''""~-_,.,.,.,,,,.,._,,.._.,,,,,,""""'"°""''''''"-""" "' -~...,""""--..""'"~~ ~- <r ~" if:" "'~

I Aside Shifti11g Jiy k,,iox largeyalliJ,s,.of k J'I ,, '' J<""''

I For a dat~ type consisting of w bits, 'l'hilt shohld be, tfir effect ofs'.ftifii'ng by so~~ value k 2:: w? For

I exar:iple, what,spoulcj be,the effect of computing the fBll?wing expressions, assurhh!g dat>rtype int has
w = 32: • l

!. int> i.var ~ OxFEpcB~~' .~< :32~·-- ~· , , '' I int aval = OxFEDCBA98 » 36; ,,
I qnsigned uval = OxFEDCJlK~Su '.>> .40f

t The ·c stand'ards careriiny'avo'[ct'sfatlng'l\:hat shbuld b;e done ip su,li a case:D;i many machines, the
1 shift instructions consider only'the lower log2 w !lits of the shift ilmountwhen shifting a uJ'•bit value, aii<l
I so the)hif1"4mount is C<l,\llJ?Uletl as.k'fuod lb, for example,)Vith W•= J2, tli~ above thtee shifts would I be computed as if they .were bl(·amobnts'O, 4, and 8, respectively, giving results
~ , .;-,,. •. ~ ,,'il;j .<111-'·-!'.1$ ~« "'·-, .• ~ -'t'~• ~-·~ ' •.

I· Na1. OxI;E!iCBA9S "'"

lw.avar ,OxFFEDCBA,9' > <

uvaJ,' 9xQOFEDQBA, ~ ,, , "
-ill-

! This behavior.js nqtguaraptee'd{of C'1'1'rogr~ms: hpY/ever,,and s\)'shift £mounts should be keptles~ than
}thewortlsize.~~ ~ _ ·.- ... ~r ~··'_ 1~ .. _ "1. '·

l !a:a; ~n the oth'er ~aija, sl\~~!.~cally re~uii'e~.t~~t shift'amo,unts s~'ould be ppmputed)n the modular
fashion we 4ave sho'W!l· .. ·f"")fa - ··'-"'- ,.. ~- ···J 't;l'-"t ~

~'II"' " ~ "~ '• { h~~ 'Tu. '* ~ ii,., O!;"l'

·-~~ - . -·-· ,- ' ' ~ . , . '" '

Ide Operator preceaenc'e issues.with sbift op~rat[ons·

mighl'pc; te(llpfihg ~o ;,;t;1~'ihe e:"pre~sion'1«12',,. 's<~4': intendin~i\ t~ ~,;~~ \l«2/ + (3~<4). How
l ever, in C.!he former expre~sioJ,1.:\s equivalei;} tq,1 «• (2.C3j << 4, !ince addition (and subtraction) have.

I·. hi~h.er prd:egence than. shifts. The left-to-ri.gh; associati':ity ru)e, t.hen C');uses this tp be p,areritl)esized
a((1 <'< (;l+S),) '« 4, g1vmg value 512, ratl)er than themtended:Sz,, •

{ . ~Qetting the preced~~~e JYr9ng ~· C. e1~re%si,bns . .Js ~ cd~mpn,s~urCe .of program errors, and ofteµ

L'th.ese',are' difJ'ic~~-t·.~o'spot•bJI. i,nsgect\9n::i"11§1t irrdoubt! pilt'in pai;en'th<;~esJ .
•• • •. ~ ~ "" ' " ,.,)• .._ "' 4' ~ ~ .•. ~ .,., ~ 41 $

2.2 Integer Representations

In this section, we describe two different ways bits can be used to encode integers-
one that can only represent nonnegative numbers, and one that can represent
negative, zero, and positive numbers. We will see later that they are strongly
related both in their mathematical properties and their machine-level implemen
tations. We also investigate the effect of expanding or shrinking an encoded integer
to fit a representation with a different length.

Figure 2.8 lists the mathematical terminology we introduce to precisely de
fine and characterize how computers encode and operate on integer data. This

I
I 60 Chapter 2 , Representing and Manipulating Information

)•

Symbol Type Meaning Page

B2Tw Function Binary to two's complement 64
"

B2Uw Function Binary to unsigned 62

U2Bw Function Unsigned to binary 64

U2Tw Function Unsigned to two's complement 71

T2Bw Function Two's complement to binary 65

T2Uw Function 'I\vo's complement to unsigned 71

TMinw <;onstant Minimum two's-complement value 65

TMaxw Constant Maxim1fID two's-complement value 65

UMaxw Constant Maximum unsigned value 63

+' Operation 1\vo's-complement addition 90
w

+" Operation Unsigned addition 85
w

•' Operation Two's-complement multiplication 97
w

*" Operation Unsigned multiplication 96
w

-' Operation Two's-complement negation 95
w

-" Operation Unsigned negation 89 ·'
w

Figure 2.8 Terminology for integer data and arithmetic operations. The subscript
w denotes the number of bits in the data representation. The "Page" column indicates
the page on which the term is defined.

terminology will be introduced over the course of the presentation. The figure is
included here as a reference.

2.2. 1 Integral Data Types
• 1'

C supports a variety of integral,da\a types-ones that represent finite ranges of
integers. These are shown in Figures 2.9 and 2.10, along with the ranges of values
they can have for "typical" 32- and 64-bit programs. Each type can specify a
size with keyword char, short, long, as well as an indication of whether the
repr.esented numbers are all nonnegative (declared as unsigned), or possibly
negative (the default.) As we saw in Figure 2.3, the number of bytes allocated for
the different sizes varies according to whether the prograifi' is compiled for 32 or
64 bits. Based on the byte allocations, the different sizes allow different ranges of
value's to,b~ represented. The onlfmachine-dependent rimge'i11dicatea is for size
d~~ignator long. Mo.~t 64-bi\ programs.use' an 8-byte representation, giving a much
Wider range of values than the 4-byte representation used with 32-bit programs.

One imp~;i'ant featur~"to il.o'(e in Fi~i\re's12.9 and 2.10 is that the ranges are not
symmeiric-the ran~~ lif7i~gati~e mlmbers,extends on~ further i)ian the range of
p9~itive numb<;rs. Vfe fill see why this happel)s' when we consider 'how negative
numbers are r¥pre~~nted.

"

Section 2.2 Integer Representations

C data type Minimum Maximum

[signed] char -128 127
unsigned char 0 255

short -32,768 32,767
unsigned short 0 65,535

int -2,147,483,648 2,147,483,647
unsigned 0 4,294,967 ,295

long -2,147,483,648 2,147,483,647
unsigned long 0 4,294,967,295

int32_t -2,147,483,648 2,147,483,647
uint32_t 0 4,294,967,295

int64_t -9,223,372,036,854,775,808 9,223,372,036,854,775,807
uint64_t 0 18,446,744,073,709,551,615

Figure 2.9 Typical ranges for C Integral data types for 32-bit programs.

C data type Minimum Maximum

[signe~J char -128 127
unsigped char 0 255

short -32,768 32,767
unsigned short 0 65,535

int -2,147,483,648 2,147,483,647
unsigned 0 4,294,967,295;'

• ,[J

long -9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long 0 18,446,744,073,709,551,615

int32_t -2,147,483,648 2,147,483,647
uint32_t 0 4,294,967 ,295

int64_t -9,223,372,036,854,775,808 9,223,372,0~6,854,775,f'.07
' uint64_t 0 18,446,744,073,709,551,615

Figure 2.·10 Typical ranges for C integral data types for 64-bit programs.

The C standards define minimum ranges of valueS' thal ~ach data type must
be able to represent! As shown in Figure 2.11, their ranges are the same or smaller
than the typical implementations shown in Figures 2.9 and 2.10. In particular,
with the exception of the fixed-size data types, we see that they require only a

61

. ----- --- - -
- ---- M

62 Chapter 2 Representing and Manipulating Information

,.~_.,....----~---~----w-.-.,,.-~-~ -- - -rR,..-r--
ew to C? "'Signed and)osigi\e~,j'llln:iQC(sJ~.<f" <;;'.~+;~l]J,Ja'\fl • ', . . _:_:· ~'l:r·~t-
oth C and C++ suppprt si~~d (the ~~ta ult) aiic{qnsfgne~,~~mb$:rs. Ja.~a ~upp~r!s o~ly ;ku~~J{u~l;.er~':-:
,,_,,.,,_,,-~,--~~,,,,,..,-~~~-... wtw,--- , -.,,~;.t;_.- ,_

C data type ~inimum Maximum

[signed]'char -127 127

unsigned char 0 255

short -32,767 32,767

unsign~p. short 0 65,535

int -32,767 32,767

unsigned 0 65,535

long -2,147,483,647 2,147,483,647

unsigned long 0 4,294,967,295

'
int32_t -2,147,483,648 2,147,483,647

uint32_t 0 4,294,967 ,295

int64_t -9,223,372,036,854,775,808 9,223,372,036,854,775,807

uint64_t 0 18,446,744,073,709,5,51,61_5

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require
that the data types have at least these ranges of values.

,

symmetric range of positive and negative numbers. We also see that data type int
could be implemented with 2-byte numbers, although this is mostly a throwback
to the days of.16-bit machines. We also see'that size long can be implemented
with 4-byte numbers, and it typically is for 32-bit programs. The fixed-size data
types guarantee that the ranges of values will be exactly those given by the typical
numbers of Figure 2.9, including the asymmetry between negative and positive.

2.2.2 Unsigned Encodings
' .

Let us consider an integer data type of w bits. We write a bit vector as either x, to
denote the entire vector, or as [xw-l• xw_2,. '·, x0] to denote the individual bits
within the vector. Treating x as a number written in binary notation, we obtain the
unsigned interpretation of x. In this encoding, each bit x, has value 0 or 1, with the
latter case indicating that value 2' should be included as part of the numeric Value.
We can express·this interpretation as ·a function B2 U w (for "binary to unsigned,"

length w):

Figure 2.12
°2'=8

' 22 = 4

2'=2•

2'=11.!t

SectiOn 2.2 Integer Representations 63

Unsigned number
examples for w = 4.
When bit i in the binary
representation has value 1,
it contributes 2i to the
value. 0 1 2 3 4 5 6 7 8 9 10 •11 12 13 14 15 16

[0001]' ,
'[0101]

[10j1]

[1111)

PRINCIPLE: Definition of unsigned encod,ing

For vector x = [xw-1• xw-2• ... , xo]:

w-1

B2Uw(x) = L x;i
i=D

(2.1)

I

In th\s eguation, the notation= m,e\ill,&{hat the left-hand side is defined to be
equal to the right-hand side. The function B2Uw maps strings of,zeros and.ones
of length w to nonnegativt;: integers. As examples, Figure 2.12 shows the mapping,
given by B2U, from bit vectbrs to integers for the following cases:

B2U4([0001]) = o . 23 + o . 22 + o . 21 + 1 . 2° = 0+0+0+1 = 1
B2U4([0101]) = o. 23 + 1. 22 + o. 21 +1. 2° = 0+4+0+1 = 5
B2U4([10ll]) = 1. 23 + o. 22 + i,. 21 +1. 2° = 8+0+2+1 = 11
B2U4([llll]) =· 1. 23 + 1. 22 + 1. 21 +1. 2° = 8+4+2+1 -· 15

(2.2)

In the figure, we represent each bit position i by a rightward'poihting blue bar of
length 2;. The numeric value associated with a bit ,vector then equal~,the sum qf
the lengths of the bars for which the corresponding bit values are 1.

Let us consider thd range of values tha't can be represented using w bits. The
feast ~alue is given by bit vecto~ [00 · · · OJ having integer value 0, and the greatest
value is given by bit vector [11 ·• · ·1] having integer value UMaxw = L:t=ci 2; =
zw -1. Using the 4-bit case as an example, we have UMax4 = B2U4([1111]) =
24 -1=15. Thus, thefunctionB2U w can bedefinedasamappingB2U w: (0, l)w-+
{O, ... , UMaxw}· '' .

The unsigned>binary representation has the imp6rtant p'rt>perty thaf'every
miml5er lietween O"and zw - 1 has a unique encoding as aw-bit value. For example;

II

,,,I

ii!
I
I

- ~ ---·---- -- .

64 Chapter 2 Representing and Manipulating Information

there is only one representation of decimal value 11 as an unsigned 4-bit number
namely, [1011]. We highlight this as a mathematical principle, which we first state
and then explain.

PRINCIPLE: Uniqueness of unsigned encoding

Function B2 V w is a bijection. I

The mathematical term bijection refers to a function l that goes two ways:
it maps a value x to a value y where y = l(x), but it can also operate in reverse,
since for every y, there is a unique value x such'that l(x) = y. This is given by
the inverse function l-1, where, for our example, x = l-1(y). The functionB2U w

maps each bit vector of length w to a unique number between 0 and 2w - 1, and
it has an inverse, which we call U2Bw (for "unsigned to binary"), that maps each
number in the range 0 to 2w - 1 to a unique pattern of w bits.

2.2.3 Two's-Complement Encodings

For many applications, we wish to represent negative values as well. The most com
mon computer representation of signed numbers is known as two's-complement
form. This is defined by interpreting the most significant bit of the word to have
negative weight. We express this interpretation as a function B2T w (for "binary
to two's complement" length w):

PRINCIPLE:. Definition of two's-complement encoding

For vector x ='[xw-1' Xw-2> •.. , xo]:

w-2

B2T w(x) = -xw-12w-l + L x;i
i=O

(2.3)

I

The most significant bit xw-I is also called tlie sign bit'. It~ "weight" is -2w-l,
the negation of its weight in an unsigned representation. When the sign bit is set
to 1, the represented value is negative, and when set to 0, the value is nonnegative.
As examples, Figure 2.13 shows the mapping, given by B2T, from bit vectors to
integers for the ,fpllowing. sases:

B2T4([0b01]) = -0-23 +0'-22 +0·21 +1·'2o = . ~ " '
B2T4([0101]) = -0-23 +1·22 +0·21 +1·2o =
B2T4([1011]) .= -1·23 +0·22 +1 .. 21+1·20 =

0+0+0+1
,< I

0t1,t0+ 1
-8+0+2+1

= 1

=, 5
-5

B2T4([1111]) = -1·23 +L)2 +1·21 +1·2o ~ -8+4+2+1 = -1

(2,4)

In the figure, we indicate that the sign bit has .negative weight by showing it as
a leftward-pointing gray bar. The numeric value associated wi.th ~)Jit·vector is
then given by the combination of the. possible leftward-pointing gray, bar and tl;Je
rightward-pointing blue bars.

------ ------------ --------- -

'

'
i
I
·I

I
j

Section 2.2 Integer Representations 65

Figure 2.13
Two's-complement
number examples for

<1.. ______ _.l-2' = -8

22=4-
2'=2•

2'= 1 ID
w = 4. Bit 3 serves as a
sign bit; when set to 1, it
contributes -23 = -8 to
the value. This weighting
is shown as a leftward
pointing gray bar.

~~~~4~4-1012345678 

(0001] 

[0101] r---+---+
[1011] 

[1111] 

We see that the bit patterns are identical for Figures 2.12 and 2.13 (as well as 
for Equations 2.2 and 2.4), but the values aiffer when the most significant bit is 1, 
since in one case i\ has weight +8, and in the other case it has weight -8. , 

Let us consider the range of values that can be represented as a w-bit two's
complement number. The least representable value is given by bit vector [10 ... OJ 
(set the bit with negative weight but clear all others), having integer value 
TMinw = -2w-l. The greatest value is given by bit vector [01···1] (clear the bit 
with negative weight but set all others), having integer value TMaxw = L,~=02 2; = 
2w-l - 1. Using the 4-bit case as an example, we have TMin4 = B2T4([1000D = 
-23 = -8 and TMax4 = B2T4([0111]) =22 +21 +2°=4+2+1 =7. 

We can see that B2T w is a mappiµg of bit patterns of length w to numbers be
tween TMinw and TMaxw, written as B2T w= (0, l}w--> [TMinw, ... , TMaxwl· As 
we saw with the unsigned representation, every number within the representable 
range has a unique encoding as a w-bit two's-complement number. This leads to 
a principle for two's-complement numbers similar to that for unsigned numbers: 

PRINCIPLE: Uniqueness of two's-complement encoding 

Function B2T w is a bijection. I 

We define function T2Bw (for "two's complement to binary") to be the inverse 
of B2T w· That is, for a number x, such that TMinw::; x::; TMaxw, T2Bw(x) is the 
(unique) w-bit pattern that encodes x. 

rr@fclc::~. ~r:QEir~ii! :2: 11 (i~1ut;o(]k~ ..... -- , .. , ., ____,~.::;;:: 
Assuming w = 4, we can assign a numeric value to each possible hexadecimal 
digit, assuming either an unsigned or a two's-complement interpretation. Fill in 
the following table according to these interpretations by writing out the nonzero 
powers of2 in the summations shown in Equations 2.1and2.3: 



r-~ 

I 
1 

I 
ii 

I 

j 

I 

I 
I 
II 

\ 

----~-~ ··--- - ··- . -- --·- -

66 Chapter 2s•Representing and Manipulating Information 

x 
Hexadecimal Binary B2U4(X) B2T<(x) 

OxE [1110] 23 + 22 + 21 =14 -23 + 22 + 21 = -2 
OxO ---
Oxq ----
OxB ·----
OxD ------ -----
OxF --- ~---

Figure 2.14 shows the bit patterns and numeric values for several important 
numbers for different word sizes. The first three give the ranges of representable 
integers in terms of the values of UMaxw, TMinw, and TMaxw. We will refer 
to these three special values often in the ensuing discussion. We will drop the 
subscript wand refer to the values UM ax, TM in, and TM ax when w can be in(erred 
from conte~i or i~ not central to the disc~s~ion. ' J'f 

' ~ ' ' '• ' ' .._ !' ·i 
A fe~ points are worth highlighting about these numbers. First, as oMerved 

in Figures 2.9 and 2.10, the two•s'.complem."nt range is, asyplmetric: \ Tfrtin\ = 
\TM ax\ + 1; th')t is, theie is no positive counterpart lb' TMin. As we shall see, this 
leads to some peculiar properFies,9f tw<;>'s-complement qrlthmetic and. can be th,e 
s9urce of subtle program bugs. 1bis aspnmetry arises because half the bit patterns 
(those wi!h thb sign 'l;>it,set to 1) represent negative numbers, while half (th4se 
with the sign blt set to 0) represent nonhegative numliers. Since 0 is nonnegative, 
this means that it can'represent one less positive number 

0

than negative. Second, 
the maximum unsigned value is just av.er twice the'maximum two's-complement 
value: UMax = 2TMax·+ 1. All ofthe10it pa.tterns'that denote negative nu!11bers in 
!~o's-complement notation J:iecom'e positive values in an unsigned representation. 

Word size w 

Value 8 16 32 64 

UMaxw Ox FF OxFFFF OxFFFFFFFF OxFF~FFFFFFFFFFFFF 

255 65,535 4,294,967 ,295 18,446,744,073,709,551,615 

Tftfi'lw Ox SO OxBOOO OxSOOOOOOO 0~~000000000000000 
P' • 

-128 -32,768 -2,147 ,483,648, -9,223,372,036,854,775,808 

TMaxw Ox7F Ox7FFF Ox7FFFFFFF Ox7FFFFFFFFFFFFFFF 
127 32,767 2,147,483,647 9,223,372,036,854,775,807 

-1 Ox FF OxFFFF OxFFFFFFFF OxFFFFFFFFFFFFFFFF 

0 OxOO OxOOOO OxOOOOOOOO OxOOOOOOOOOOOOOOOO 

Figure-2.14' Important numbers. Both" num~rit values and·hexadecimal representa-
tions are shown. 



Section 2.2 Integer Representations 67 

f .=.,•,--.. 

' Asld~ More on fixed-size integer type~, 

For some pro'grams, it is essential that data types be encoded using representatiohs with specific sizes. 
For e~ample, when ~iting prograni's to enable a macl;tine to communicate over the fflternet-according 
to a standard protocol, it is important to have.data t)'WS compatible with those specified Dy the protocol. 

' We have,, seen that some C data types, especially long, have different ranges on, different machines, 
' and in fact the G standards only specify the minimum ranges for any data type, not the exact rangeS, 

Althpugh we can choose data types t)lat will be COJ11patijl\e .with standard representations on most 
' machines, _there is no guarantee of portability. 
, . We h;ve already encountered the ,32- and 64-bit versions of fixed-size integer tyj>es (Figure 2.3); 
; they are part o'(i liirger.class of data /ype:j. Th~ IS<;J 'C99 sta'.ndard intrbduces this llas~. of integer types 

in the file· st dint, h, This file defines a set of data types with declarations of'the form :iritN _t;, and 
uintN _ t, specifying N-bit signed and.uqsigned integers, for pifferent values of N: The exact values of 
N are implementation dependent,but,most compilers allow value,s of 8, 16, 32, and 64. Thus, we ean 
unambiguously declare' an utfsignea 16-oit variable by giving it type uint16_t, and a signed varial;>le 

_ of 3Z. bits as int32 t. 
' A1cing wit\1 th~~e data typei'are !set of ljlicr9,s d,efining the minimum and maxim~m valv~'for 

eachyalpe of N,. The,se have hamesof-the, form 'INT N~MIN, I~T{V _MAX" and UINTfl _MAX.'_ , ' 
Formatteq printing with fixed-width tYpes require~ use of macros that eipj!n,~ into format-strings 

I In a system,-d~p~pdent map,ner._So, for ~xample, !he values of variables x andy of type int3?-t and 
••. ' - t ~ ,,,, - ' - ' ! ~int64_t can pe l!rinted by'tq!''follmyfog call to,prin1<f: 1, 

print~( 11X ><f--i'~~PR!d32~1i, y = %11 PRiu64"'·"'1\n 11
", x\ y),;~ 

When co~piled ~(~ 64;bit pfog~mh,"1)actb PRid~2 ex,Pands to the s1fing "ct", wfiife PR;iu64expiinds 
~ to the P~ir of strings 11 l 11 11 u 11

• !\'he~n the -c· preprocessor ~nc9unt"ers a seqlle'ii& of' String c6nstan{s 
separated only by spaces (o~ other whitespape characters), it concatenates them, together. Thus, the 

~ above call to pr intf becomes 

'printf ( 11 X 1'""/od, y·h& %iu\llfl,. x~, yYi·'· ;. ~ '· ~ ' ~ it~ 

t Using th1: f!Jacrps. e~~ures 'f!i~t a,\0;rf;tJg;£lla\'/!t~fug wlll be geqerated ,(egafd!ess,of how the code is 
~ compiled. ~ ~ ' ~~ *' 
, "~ ~: J:i• IM ~ A,t 

Figure 2.14 also shows the representations of constants -1 and 0. Note that -1 
has the same bit representation as UMax-a string of all ones. Numeric value 0 is 
represented as a string of all zeros in both representations. 

The C standards do not require signed integers to be represented in two's
complement form, but nearly all machines do so. Programmers who are concerned 
with maximizing portability across all possible machines should not assume any 
particular range of representable values, beyond the ranges indicated in Figure 
2.11, nor should they assume any particular representation of signed numbers. 
On the other hand, many programs are written assuming a two's-complement 
representation of signed numbers, and the "typical" ranges shown in Figures 2.9 
and 2.10, and these programs are portable across a broad range of machines 
and compilers. The file <limits, h> in the C library defines a set of constants 



rr~---~-=-~-Jll ---'51". 

l 68 Chapter 2 Representing and Manipulating Information 

I 1, 

A~ide Alternati~e rep~°"s~.ntatjons of signed numbers ,. "'· :• 

Jhere are two other standarc[represerltl!tiqns for sign[!Ct11ulnbers:~ -r/ ....,,.,, *" 

~·~Q;i"s' CO"!f?J~~e~fr .Th;$ isJhe s~i<:a:"~'wo's CQWPlenj:ent, e~ce1;1\:thaLthe.m~stsig~fi~a~t bit has i 
.• , .w~jgqt,,-(2';';- 1 ,--, l)'.r11\h<;r tji\d). -2w-I;· ' ,,,. n , l 

l 
i 

·~ ,w-2 

B20 'x)"'= -'-X: •1(zw-i.,,,1_') +'"'\:' x'2'. W\:i, ,, W- ~I 

H i=O ~f . ' 
'Sign ma.z~ltude. J,ll<'l.!llO~.t sign\~caµth.it is a•<Ji!\!' bit that;;det~rmin~s wbeth,er~tb~ r~inain\)',g !)its 

&~oulp.. be.,giy~eft. p~~gativ~ or posi!ive ~eig~t: ,f ,,,~ ~ 

·' s2's ( ")" · ( ~)x -! • "' ' '2' • "I• (w-'2 j' 
' • ,w x = -1 w • £.:,xi'"'' 

~ ',f ' ,. 
111 

"'· i;gO "" ~ ' ' "iiS , 
"'· ·~ ~ ~ 

Bqth,o,f Fhese r~p~esel)tatiops ha~e tjle curious property tha,t tliere are two diffe'teni epcodings of the i 
nunitier 0. For oolh r~pre~<'ntations,JOO · ··OJ iSJntefriireted afj-0, TJ!e value -O·can be.repre~ented J 
in sign-magnitudeform'as !JO:-·.· O)Jl.!'d iii Ol)e~' co'mplement as [11 · · -1]. Although machines based 
0£,ones"-compleine'ht feprlsentations w'ere_built in th~ gast,,alrriosi all modern rriachines use two's _ 
.;,mplement. We win see'that sign,magnitucte encdding is used ;ith floating-point numbers. ! 

Note the different po~ition of apostrophe'\; tw~'s complement versu's ones' cmriplement. tlie tehn 1 
"t):"o's complement" ?:rises fro_m the factthatJor.~nonn~gative x we cofup~.111 a'w-bit repreftentation t 
of -x a_§ 2w - x \a ~ingle two.) The term, "on,es' complement" cgnies fr\lfll tile property. that we can 

• ~:'!~~:-.:~:!~is.'.::a~o~ a:ri~:.~~1~:-_:.~!'.£2~.~~: "' _,. '"-·' ··---···~· _ ._ J 

delimiting the ranges of the different integer data types for the particular machine 
on which the compiler is running. For example, it defines constants INT.MAX, INT_ 
MIN, and UINT_MAX describing the ranges of signed and unsigned integers. For a 
two's-complement machine in which data type int has w bits, these constants 
correspond to the values of TMaxw, TMinw, and UMaxw. 

The Java standard is quite specific about integer data type ranges and repre
sentations. It requires a two's-complement representation with the exact ranges 
shown for the 64-bit case (Figufe 2.10). In Java, the single-byte data type is called 
byte instead of char. These detailed requirements are intended to enable Java 
programs to behave identically regardless of the machines or operating systems 
running them. 

To get a better understanding of the two's-compl~ment representation, con
sider the following code example: · 

short x = 12345; 
2 short mx = -x; 
3 

4 show_bytes ((byte.pointer) &x; sizeof (short)); 
5 show_bytes((byte_pointer) &mx, sizeof(short)); 

i 
I 
' 
I 
l 

i 
I 
·I 

i 
j 

j 
I 



Section 2.2 Integer Representations 

12,345 -12,345 53,191 

Weight Bit Value Bit Value Bit Value 

1 1 1 1 1 1 1 
2 0 0 1 2 1 2 
4 0 0 1 4 1 4 
8 1 8 0 0 0 0 

16 1 16 0 0 0 0 
32 1 32 0 0 0 0 
64 0 0 1 64 1 64 

128 0 0 1 128 1 128 
256 0 0 1 256 1 256 
512 0 0 1 512 1 512 

1,024 0 0 1 1,024 1 1,024 
2,048 0 0 1 '2,048 1 2,048 
4,096 1 4,096 0 0 0 0 
8,192 1 8,192 0 0 0 0 

i6,384 0 0 1 16,384 1. 16,384 
±32,768 0 0 1 -32,768 1 32,768 

Total 12,345 -12,345 53,191 

Figure 2.15 Two's-complement representations of 12,345 and -12,345, and 
unsigned representation of 53, 191. Note that the latter two have identical bit 
representations. 

When run on a big-endian machine, this code prints 30 39 and cf c7, indi
cating that x has hexadecimal representation Ox3039, while mx has hexadeci
mal representation OxCFC7. Expanding these into binary, we get bit patterns 
[0011000000111001] for x and [1100111111000111] for mx. As Figure 2.15 shows, 
Equ~tion 2:3 yields values 12,345 and -12,345 for these two bit patterns. 

IP'i1mlse Pr9P1em'6.'1tf·1sri1iltioo j)a~e 142l · ', ., .... , • ,. , f,. .~! 
In Chapter 3, we will look at listings generated by a disassembler, a program that 
converts an elfecutable program file back to a more readable ASCII,,~oqn. ,These 
files coutain many hexadecimal numbers, typically representing values in two's
complement form. Being able to recognize these numbers and understand their 
significance (for example, whether they are negative or positive) is an important 
skill. 

For the lines labeled A-I (on the right) in the following listing, convert the 
hexadecimal values (in 32-bit two's-complement form) shown to the right of the 
instruction names (sub, mov, and add) into their decimal equivalents: 

69 



I 
:! 

11 

I 

----.-· 

70 Ch~pter 2 Representing 'and Manipulating Information 

4004d0: 4S Sl ec eO 02 00 00 sub $6x2€0,%rsp A. 
4004d7: 4S Sb 44 24 aS mov -Ox5S(%rsp),%rax B. 

4004dc: 4S 03 47 2S add Ox28(%rdi) ,%rax c. 
4004e0: 4S S9 44 24 dO mov %rax,-Ox30(%rsp) D. 

4004e5: 4S Sb 44 24 7S mov Ox78(%rsp),%rax E. 

4004ea: 4S S9 S7 88 00 00 00 mov %rax,Ox88(%rdi) F. 

4004f1: 48 8b S4 24 f8 01 00 mov OxlfS C%rsp), %rax G. 

4004f8: 00 
4004f9: 48 03 44 24 OS add Ox8(%rsp),%rax 
4004fe: 48 89 84 24 co 00 00 mov %rax,Oxc0(%rsp) H. 

400505: 00 
400506: 4S 8b 44 d4 b8 mov -Ox48(%rsp,%rdx,8),%rax I. 

2.2.4 Conversions between Signed and Unsigned 

C allows casting between different' numeric data types. For example, suppose 
variable xis, declared as int and u as unsigned. The expression (unsigned) x 
converts the value of x to an unsigned value, and (int) u converts the value of u 
to a signed integer. What should be the effect of casting signed value to unsigned, 
or vice versa? From a mathematical perspective, one can imagine several different 
conventions. Clearly, we want to preserve any value that can be represented in 
both forms. On the other hand, converting a negative value to unsigned might yield 
zero. CoI!Verting an unsigned value that is too large to be represented in two's
complement form might yield TMax. For most implementations of C, however, 
the answer to this question is based on a bit-level perspective, rather than on a 
numeric one. 

For example, consider the following code: 

~short int , v, = -12345 i 
2 unsigned short -)~V = (unsigned shor.t) y i 
3 p;rin~f("v = %d, uv = %u\I}",, v •. uy); 

When run on a two·~:cl)mplem!'nt machine, i
1
t d~ner,ates ihe follo~ng output: ' 

' ' 
V = -12345, UV = 53191 

What we see here is that the effect of casting is to keep the bit values identical 
but change how these bits are interpreted. We saw in Figure 2.15 that the 16-bit 
two's-complell\enhepresentation: of -12,345 is identical 'lo the lo-bit unsigned 
representatiQh 'o( 53,191. Castiµg froin short' to llisigned short changed the 
numeric value, but riot the bit·represe'ntation. ' 

Similarly, ctinsider 'the 'followihg code: ·· 

unsigned u = 4294967295u; /• UMax •/ 
2 ·int tu =•,(int) 'u; 

t • 

., 

j 

' .1 
' 



Section-:2.2 Integer Representations 71 

3 printf( 11 u = %u, tu= %d\n 11
, u, tu); 

When run on a two's-complement machine, it generates the following output: 

u = 4294967295, tu = -1 

We can see from Figure 2.14 that, for a 32-bit word size, the bit patterns represent
ing 4,294;967,295 (UMax32 ) in unsigned form and -1 in two's-complement form 
are identical. In casting from unsigned to int, the underlying bit representation 
stays the same. 

This is a general rule for how most C implementations handle conversions 
between !signed and unsigned numbers with the same word size-the numeric 
values. might cha'nge, but the bit patterns do not. Let. us capture this idea in 
a more mathematical form. We defined functions U2Bw and T2Bw that map 
numbers to their bit representations in either unsigned or two's-complement form. 
That is, given an integer x in th,e range 0::; x <' UMaxw, the function U2B1n(x) 
gives the unique w·bit unsigned representat,iqn. of x. SimilarlY, when;< is. in the 
range TMinw::; x '::; TMaxw, the function T2Bw(x) gives the unique w-bit two's
complement representation of.x. 

Now define the function T?U w as T2U w(x) = B2U w(T2Bw(x)).1bisfunction 
takes a number between TMinw and TMaxw and yields a number between O and 
UMaxw, where the two numbers have identical bit representations, except that 
the argument has a two's-complement representation while the result is unsigned. 
Similarly, for x between 0 and UMaxw, the function U2T w• defined as U2T w(x) = 
B2T w( U2Bw(x )+;yields the number having the same two's-complement represen
tation as the unsigned representation of x. 

Pursuing our'earlier examples, we see from Figure 2.15 that T2U16(-12,345) 
= 53,191, and that U2T,16(53,191) = -12,34~. That is, the 16-bit pattern writtep. in 
he)\adecimal as 01<CFC7 is both tl\J: ·t~o's-conwlement representation of -12,345 
and the unsign~d representation of 53,19,1. Note also that 12,345:+ 53,191 = 
65,536 = 216. TQjs property generalizes to a relationship between the two nu
meric values (two's complement and unsigned) represented by a given bit pat
tern. Similarly, from Figure 2.14, we see that T2U32(-1) = 4,294,967,295, and 
U2T32(4,294,967,295) = -1. That is, UMax has the same Bit representation in un
signed form as does -1 in two's-complement form. We can also see the relationship 
between these two numbers: 1+UMaxw=2w. ' 

We see, then, that function T'2 tJ tlescribes the 'conversion of a two's
complement number to its unsigned counterpart, while U2T converts in the op
posite direction. Th'ese Clescribe the effect of casting between these data types in 
most C implementations. 

' ' 
'tl ~,. 6 ···- WJ S"'I '• .":.,~ .:~·~~Jiim~!:'*:iJ 

Using the table you filletl in when solving Problem 2.17, fill in tlie following table 
describing the function T2 U 4: 



I 

72 Chapter 2 Representing and Manipulating Information 

x 12U,(x) 

-8 
-3 
-2 
-1 

0 
5 

- __ .., ... ~ -

The relationship we have seen, via several examples, between the two's
complement and unsigned values for a given bit pattern can. be expressed as a 
property of the function T2U: 

PRINCIPLE: Conversion from two's complement to unsigned 

For x·such that TMin:,, :ox :o TMid'f: 

I I 
(2.5) 

I 

For example, we saw that T2U16(-12,345) = -12,345 + 216 = 53,191, and also 
that I2Uw(-1) = -1+2w = UMaxw. 

This property can be derived by comparing Equations 2.1 and 2.3. 

'" DERIVATION: Conversion from two's complement to unsigned 

Comparin}l Eqtlationsi.1 and 2.3, we can see that-for bit pattern x, if we compute 
the difference B2 U w(x) - B2:Z: w(x), lhe weight~d suins for bits from 0 fo w - 2 Will 
cancel each'dther, leaving a value B2U w<x) ~ B2'Fu,(x) = xw_1(2w-)._ -2w-ly"' 
xw_

1
2w. This gives a relationship B2U w(x) = B2T w(x) + xw_12w. We-therefore 

have 

(2.6) 

In a two's-complement representation of x, bit xw-l determines whether or not x 
is negative, giving theA:Wo cases of Equation 2.;,. I 

' ,. ' 
As examples, Figure 2.16 compares how functions B2 U and B2T·\ls¥gn values 

to bit patterns for w = 4. For the two's-complement case, the most significant bit 
serves as the sign bit, which we diagram as a leftward-pointing gray bar. For the 
unsigned case, this bit has positive weight, which we show as a rightward-pointing 
black bar. In going from two's complement tO unsigned, the most significant bit 
changes its weiglit frcim -8 to +8 .• As a consequence, the values that are nega
tive in a two's-complementTepresentation increase by 24 = 16 with all' unsigned 
representation. Thus, -5 becomes +11, and -1 becomes +15. 



Section 2.2 Integer Representations 73 

Figure 2.16 
Comparing unsigned 

-23 = -8 

2'~a 

2'=4 

2'=2• 
2'=1 ~ 

and two's-complement 
representations for w = 4. 
The weight of the most 
significant bit is -8 for 
two's complement and +8 
for unsigned, yielding a net 
difference of 16. 

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Figure 2.17 
Conversion from two's 
complement to unsigned. 
Function 12 U converts 
negative numbers to large 
positive n~mbers. 

,, 

[1111] 

Two's 
complement 

2w-1 Unsigned 

0 0 

Figure2.l 7 illustrates the general behavior of function 12U. As it shows, when 
mapping a signed number to its unsigned counterpart, negative numbers are con
verted to large positive numbers, wl'lile nonnegative.numbers remain unchanged. 

1Piact1~Brtil!1em;1fm;1s:~1Ul!'Q/fiiilil'~'.i12t&:~-·-:" '"' ·&':¥".'" '"'i ll1.~~ 
Explain how Equation 2.5 applies to the entries in the table you generated when 
§Qlving Pr9blem 2.19. 1 

Going in the other direction, we can state the relationship between an un
signed number u and its signed counterpart U2T wCu): 

PRINCIPLE: Unsigned to two's,complement conversion 

For u such that 0 :S u :S UMaxw: 

{ 
u, 

U2T w(u) = u _ zw, 
u:::; TMaxw 1 

u > TMaxw 
(2.7) 

• 



• 
I 

. - --- . 

74 Chapter ..2 Representing and Manipulating Information 

Figure 2.18 
Conversion from 
unsigned to two's 
complement. Function 
U2T converts numbers 
greater than 2w-l - 1 to 
negative yalues. 

Unsigned 2w-1
' 

0 

+2W-1 

0 Two's 
complement 

-2w-1 

This principle can be justified as follows: 

DERIVATION: Unsigned to two's-complement conversion 

Let u = U2Bw(u ). This bit vector will also be the two's-complement representation 
of U2T w(u). Equations 2.1 and 2.3 can be combined to give 

U2T w(u) = -Uw-12w + U (2.8) 
'· 

In the unsigned representation of u, bit uw-l determines whether or not u "is greater 
than TMaxw = 2w-l - f, giving the two cases of Equation 2.7. '. I 

The behavior of func_tion 1U2T is illustrated in Figure 2.18. For small 
(:;; TMaxw) numbers, the conversion from wisigned to signed preserves the nu
meric value. Large(> TMaxw) numbers are converted to negative values. 

To summarize, we considered the effects of converting in both directions 
between unsigned and two's-complement representations. For values x in the 
range 0:;; x:;; TMaxw, we have 12Uw(X! = x. and. U2T ,,;(x) =;.:t.'Il!at is, num
bers in this range have identical unsigned and two's-complement representations. 
For values outside of this range, the conversions either add or subtract 2w. For 
example, we have 12U w(-1) = -1+2w = UMaxw-t\Je negative number clos
est to zero maps to the largest unsigned numlier. At the other extreme, one 
can see 'tnat 12U wCTMiriw) =·-2w~I +' 2w '= 2w-l = TMdxw '+- l"'!the most neg
ative number maps to an unsigned number just outside the range of·p6sitive 
two's-complement numbers. Using the example of Figure 2.15, we can see that 
T2U16 (-12,345) = 65,536 + -12,345 = 53,191. 

2.2.5 Signed versus Uns'igned in C 

As indicated in Figures 2.9 and 2.10, C'supports both signed and unsigned arith
metic for all of its integer data types. Although the C standard does not spec
ify a particular representation of signed numbers, almost all machines use two's 
complement. Generally, most numbers are signed by cjefault. For e,xample, when 
declaring a constant such as• 12345 or Ox1A2B, the value is considered signed. 
Adding character 'U' or 'u' as a suffix creates an unsigned constant; for example, 
12345U or Ox1A2Bu . 



Section 2.2 Integer Representations 75 

C allows conversion between unsigned and signed. Although the C standard 
does not specify precisely h9w this conversion should be made, most systems 
follow the rule that the underl}'ing bit representation does not change. This rule has 
the effect ofapplying the function U2T w when converting from unsigned to signed, 
and T2U w when converting from signed to unsigned, where w is the number of 
bits for the data type. 

Conversions can happen due to explicit casting, such as in the following code: 

int tx, ty; 
2 unsigned ux, uy; 
3 

4 tx = (int) ux; 
5 uy = (unsigned) ty; 

Alternatively, they can happen \mplicitly"when an expression of one type is as
signed to a variable of another, as in the following code: 

int t~, ty; 
2 unsigned ux, uy; 
3 

4 tx = ux; I• Cast to signed""*/ 
5 uy = ty; I• Cast to unsigned */ 

~When printing numeric values with printf, the directives %d, %u, and %x 
are used to print a numbeF as a signed· decimal, an unsigned decimal, and in 
hexadecimal format, respectively. Note that printf does not make use of any 
type information, and so it is possible to print a value of type int with directive 
%u and a value of type unsigned with directive %d. For example, consider the 
following code: 

irlt x = -1; 

2 unsigned u 7,2147483648; /• 2 to the 31st•/ 
3 

4 printf( 11 x = %U = %d\n 11
, x, x); 

5 printf( 11 u = %u = %d\n 11 , u, u); 

When compiled as a 32-bit program, it prints the following: 

x = 4294967295 -1 
u = 2147483648 -2147483648 

In both cases, printf prints the word first as if it represented an unsigned number 
and second as if it represented a signed number. We can see the conversion 
routines in action: 72U32(-'-'l) = UMax32 = 232 -1 and U2T32 (z31)·= z31 - z32 = 
-231 = TMin32 . 

Some pos~ibly nonintuitive behavior ar~~es due to C's hai;tdling, of expres
sipns containing, combin')tions of signed and unsigned quantit\es. When an op
eratfon is perfcirini:d where one ,operand is signed and the 0th.er is unsigned, C 
implicitly casts the signed argumen{ to unsigned and performs the operations 



I 
I 

" 

I 

I 
I 

76 

-~------ --

Chapter 2 Representing and Manipulating Information 

Expression Typb EValltation 

0 OU Unsigned 1 
-1 < 0 Signed 1 
-1 < OU Unsigned .o• 

2147483647 > -2147483647-1 Signed 1 

2147483647U •> -2147483647-L .Unsigneil o• 
2147483647 > (int) 2147483648U Signed 1 * 

-1 > -2 Signed 1 
(unsigned) -1 > -2 Unsigned 1 

Figure 2.19 Effects of C promotion rules. Nonintuitive cases are marked by '*'. When 
either operand of a comparison is unsigned, the other operand is implicitly cast to 
unsigned. See Web Aside DATA:TMIN for why we write TMin32 as -2, 147 ,483,647-1. 

> • 

assuming the numbers are nonnegative. As we will see, this e<;>nvention makes 
little difference for standard arithmetic operations, but it leads to nonintuitive 
results for relational operators such as < and >. Figure 2.19 shows some sample 
relational expressions and their resulting evaluations, when data typy int has a 
32-bit two's-complement representation. Consider the comparison -1 < OU. Since 
the second operand is unsigned, the first one 'ls implicitly cast to unsigned, and 
hence the expression is equivalent to the comparison 4294967295U < OU ('recall 
that T2U ,c(-1) =,UMaxw), which of course is false. TJ:e other cases can be under-
stood by similaP analyses. ,. 

le'tAf'tftml$GJ§Uiftl:!i'fiil;oh:~'l!llfWifi?jAAiQj&Siij 
Assuming the expressions are evaluated when executing a 32-bit program on a ma
chine that uses two's-complement arithmetic, fill in the following table describing 
the effect of casting arld relational operations, in.the style of Figure 2.19: 

Expression Type Evaluation 

-2147483647-1 == 2147483648U 

-2147483647-1 < 2147483647 

-2147483647-lU < 2147483647 

-2147483647-1 < -2147483647 

-2147483647-lU < -2147483647 

2.2.(;i Expanding the Bit ~epresentation:of a. Number 

One common operatioq ~~to conyert J:>etween integer~ having different word sizes 
while retainin'g'the same numeric value. Of course, this may:not be possible when 
the dbtination data type i~ too small to represent the desired value. Conve~ting 
from a smaller to a largei'data

1
type, however, should always be possible. " 

) !C l 1! I ' ' 



Section 2.2 Integer Representations 77 

~~,~~~,,,,,_,,_,,,.,IJl'lllf:"'-~- ~'l!f" .,,,~,,,,. ~ "' 'IP 

: Web "sld~ Q-1\t~:T}\'ll~l)!'Vltfpg' T'1{in~i'~· 't, 1.,, . , , , ·' "" 

I In Figur<>.;U9 an\l·in:Pro,)?l~m 2'191,·we,.carefll!ly ,;;r6t.e t!ie value'of'TM]h'Jz•'lts -7 1}'47 •. ~83 ,947~1. Why·' 
ngt sjml'lY ')'rite it as eith~r -'i, 147, 483, (i4S or,,Ox8pq9oqQni'tooking'at.the C ]\eader·file·limi ts~'h, 
we see that they;use·i!.'sill!ilar.jj'lelh9,d'as 'Ye have 'to.;write.'l:'J\(in3;.ai1df'l"M(U32: ,, r. 

'·:/' tb> "' /}} ii''.,.. ! ~; ,Jf.: ,,f'i't~~ .if!.· - ' Ii, '~~ i:' >'\·· ~ -ii' 
~ I• ~ini"inunP and maximuln ~yalue"s a .. J. ~+gnGd~'iD.t~1" .,earl. llold. ~: */, ., i. 

I• #define ·INT~MAX \2147483647. ; ;,.,, , > 4. • •. 

f 
'#de:r:°"iner INT,tM!N -,, (~tNi1JtAXft.4'i,·~"l) -!·'}.,,,,_ .,i1 " ,... ""; .~ _,,. 

"'· ' ·' <l: ilJ,. •• ~ "· ' ~ ,,, ,,. ~ - : ;.;,," - "'t;i<1% ':< - " ii' 

.· . :Uq(ortul)ately,'tcuri?tf~°iplel~~!jonJi;twe~n'tlle,AsYmmftt(Y o(¢h;.t\vo!s,~c;'mBl~Teh~·re'p~~sen.ta-. 
1 

I
~. t10uandthe,conyers10n rules of C forces us•to wr1je TMm32 1n \his unusual way. Although understandmg 

t~is, iSSu~J.~qU~~s~us,:toOe1ie.i4tu ope:'°ohth~ niprkief~~fll~fi'd{ the~G};ngu~g~ sthnctarciSz it will help;"· 

~,:~s·if&'i::~:lf2:~~'-~~~~!~~~J~~~E1~1le.~a~j;,!'£e~~'..atj,~y~:. , ", ..• · ,,. "· ..• •· 

To convert an unsigned number to a larger data type, we can simply add 
leading zeros to the representation; this operation is known as zero extewion, 
expressed by the following principle: ~ 

PRINCIPLE: Expansion of an unsigned number by zero extension 

Define bit vectors ii= [uw-1' uw_2, ... , u0] of width wand ii'= [O, ... , 0, uw-I• 
uw-2• ... , uo] of width w', where w' > w. Then B2U w(ii) = B2U w'(ii'). I 

This principle can be seen to follow directly from the definition of the unsigned 
encoding, given by Equation 2.L 

For converting a two's-complement number to a larger data type, the rule 
is to perform a sign extension, adding copies of the most significant bit to the 
representation, expressed by the following principle. We show the sign bit xw-I in 
blue to highlight its role in sign extension. 

PRINCIPLE: Expansion of a two's-complement number by sign extension 

Define bit vectors;= [xw-1' Xw-2• '' ', xo] of width wand x' = [xw-1' .. ', Xw-1' 
Xw-h xw-2• ... , xo] of width w', where w' > w. Then B2T w(x) = B2T w'(x'). I 

As an example, consider the following code: 

2 

3 

4 

5 

short sx = -12345; 
unsigned short usx 
int x = sx; 
unsigned ux usx; 

sx; 

6 printf("sx %d:\t", sx); 

!• -12345 
I• 53191 
I• -12345 
/• 53191 

•I 
•/ 
•I 
•I 

7 show_bytes((byte_pointer) &sx, sizeof(short)); 
B printf("usx = %u:\t 11

, usx); 

9 show_bytes((byte_pointer) &usx, sizeof(unsigned short)); 
10 printf( 11 x = %d:\t 11 , x); 



i 
I 

I , 

----------

78 Chapter 2 Representing and Manipulating Information 

Figure 2.20 

11 

12 

1.3 

show_bytes((byte_pointer) &~, sizeof(int)(.i 
printf ( 11 ux = %u: \ t 11 

, ux) j 

show_bytes((byte_pointer) &ux, sizeof(unsigned)); 

When run as a 3Z-bit program on a big-endian machine that uses a two's
complement represent'!tion, this code prints the output 

sx = -12345: cf c7 
usx = 53191: cf c7 
x = -12345: ff ff cf c7 
ux = 53191: 00 00 cf c7 

We see that, although the two's-complement representation of -12,345 and the 
unsigned representation of 53,191 are identical for a 16-bit word size, they dif
fer for a 32-bit word size. In particular, -12,345 has hexadecimal representation 
OxFFFFCFC7, while 53,191 has hexadecimal representation OxOOOOCFC7. The for
mer ti&s been ~ign extended-16 copies of the most significimt bit 1, havin~ hexa, 
decil?ial representation OxFFFF, have been added as leading bits. The latter has 
been extended with 16 leadlng zeros, having hexadecimal representation oxoo'oo. 

As an illustration, Figure 2.20 shows the•result of expanding from word size 
w = 3to w =4 bysignextension.Bitvector [lOl]representsthevalue-4+1 = -3. 
Applying sign extension givesrbit vector [1101] representing the value -8 + 4 + 
1 = -3. We can see that, for w = 4, the combined value of the two most significant 
bits, -8 + 4 = -4, matches the valu!' of the sign bit for w = 3. Simil,arly, bit vectors 
[111] and [1111] both represent the value -1. 

With this as intuition, we can now show that sign extension preserves the value 
of a two's-complement number. 

JPli; ?fU *'"·") -2'"= -8 
Examples of sign 
extension from w =, 3 <Jznn't!:ta-22 =-4 

22=4-

21=2-

to w = 4. For w = 4, the 
combined weight of the 
upper 2 bits is -8 + 4 = -4, 
matching that of the sign 
bit for w = 3. 

2'=1 • t 

-8-7-6-5-4-3-2-f 0 1 2 3 4 5 "6 7 8 

[101] 

[111] 

[1111] 



,Section 2.z r~·lnteger Jlepresentations 79 

DERIVi\TIONc:Expan&ion qf a two's'comp)ei;nent,n_umber by sign extension 

Let w' '= w + Ii. What we want to prove-is that ,, 
" 

B2T w+k([xw-1• ... , Xw-1• Xw-1• Xw-2• ... , xoD = B2T wC[xw-h Xw-2• ...• xo]) 

k times 

The proof follows by induction on k. That is, if we can prove that sign extending 
by 1 bit preserv~s the numeric value, then this ,property wil~ hold when sign 
extending by an arbitrary number of bits. Thus, the task reduces to proving that 

Expanding the left-hand expression with Equation 2.3 gives the following: 
, 

w-1 

B2T w+iC[xw-1• Xw-1• Xw-2• ...• xoD = -xw-12w + L x;zi 
i=O 

w-2 
= -xw-12w + Xw-12w-1 + L xi2i 

,i=O 

w-2 
= :_xw-1 (2w -2w-I) + L x;zi 

i=O 

w-2 ' 

= -x 2w-I + """"'X·2i w-1 L-t I 

i=O 

= B2T wC[xw-1• Xw-2• ...• xo]) 

The key property we exploit is that 2w - 2w-l = 2w-1. Thus, the combined effect 
of aading'a bi{ of weight -'-2w and df c01Werting the'bit Jiaving weighl -2w-l' to be 
one with welg\it'-2.w-l is to preserve the briginal numeric value. 1 

• • ... 1 .. }•( 

W""i"""~...,.,fi""!:~""'ie..,..mn""']"""~~!PlmlF~~~V~I~~~~ 
Show that each of the follt.wing bil vectors is,a twtl's-complement representation 
of -5 by applying Equation 2.3: 

A.. [10111 

B. [11011) 

c. [111011) 

Observe that the second and third bit vectors can be derived from the first by sign 
extension. 



80 Chapter 2 Representing and Manipulating Information 

One point worth making 1s that tl\e relative order of conversion· from one 
data size to another and between upsigned ;md signed can affect the b~havior of 
a program. Consider the following code: 

1 

2 

3 

short sx = -12345; 
unsigned uy = sx; 

!• -12345 •/ 
I• Mystery! •/ 

4 pr~ntf( 11Uy = %u:\t 11
, uy); 

5 show_byte's ( (byte_pointer) &uy, sizeof (unsigned)); 

' When run on a big-endian machine, this code causes the following output to be 
printed: 

uy = 4294954951: ff ff cf c7 

This shows that, when converting from short to unsigned, the program first 
changes the size and then the type. That is, (unsigned) sx is equivalent to 
(unsigned) (int) sx, evaluating to 4,2~4,954,951, not (unsigned) (unsigned 
short) sx, which evaluates to 53,191. Indeed, this convention is required by the 
C standards. 

tP,FJW?llft 1 'tti~23·.<~o.1MtiB'.ft?ag§;J..io~:;r~, &;:;:i;5t::i 
Consider the following C functions: . 

int funl (wisigned word) { 
return (int) ((word<< 24) >> 24); 

} 

int fun2(unsigned word) { 
return ((int) word << 24) >> 24; 

} 

Assume these are ,e.xec!'ted as a 32-bit,program on a m,achiny th~t µses two's
complement arithmt;tic. ,Assume ,a)so that right sh*s pf signed v~)l.!es are per, 
formed arithmetically, while right shifts of unsigned va1ues are performed logically. 

A. Fill in the following table showing the effect of these functions for several 
example arguments. You willfina.it more-convenient to work with a hexa

'' dec.imal repre.senf~tion. ·Jw;! rewember that he.x digits 8 througJ;i F i)ave, their 
most significant bits equal to 1. 

w funl (w) fun2(w) 

Ox00000076 -----
Ox87654321 ---- ----
oxooooopc9 --- ---

' OxEDCBA987 ----
B. Describe in words the useful computation each of these functions performs. 

- - -- --- --_-- ----- ~___/." 



Section 2.2 Integer Representations 81 

2.2.7 Truncating Numbers 

Siippose that, rather than extending a value with extra bits, we reduC¢ tlte number 
of bits repr~senting a number. This occurs, for example, in the following code: 

int x = 53191; 
2 short sx = (short) :X:; /•'-12345 •I 
3 int " . ' ' '1•' -12345 •1 y = sx; 
" 

,, 
•! 

Casting x to be' short wiU truncate a 32-bit int 'to a 16-bit short. As we saw 
before, this 16-bit pattern· is the twb's-complement representation of -12,345. 
When casting this back to int, sign extension will set the high-order 16 bits to 
ones, yielding the 32-bit two's-comple,ment"representation of -12,345. 

When truncating a w".!iit number x = [xw_j",''iw_2, ... , .to] to a ·k-bit'number, 
we drop' the high.order w - k bits, giving a bit vector x' = [xk-1> xk_2, ... , xo]. 
Truncating a number can alter its value-a form of overflow. For an unsigned 
number, we can readily characteri2e the numeric vaiue that will result. 

PRI NCIPL~: Truncation of an unsigned number 

Le! x ,be th~ bit vecto~ [xw-1> xw_2, .. , , x0i, an~ l~t x' be the result of, truncating 
jt to k bits: x' = [xk-I> xk-2• ... , xo]. Let x = B2U w(x) and x' = B2Uk(x'). Then 
x'=xmod2k. • 

The intuition behind this principle is simply that all of the bits that were 
truncated have weights of the. form' 2;, where i =:: k, and therefore each of these 
weights reduces to zero under the modulus operation. This is formalized by the 
following derivation: 

bERIVATldN: nuncation of lln unsigned number 

Applying the modulus operation to Equation 2.1 yields 

) k . k 
B2Uw([xw-l• Xw-2• .... , xo]) mod 2 ;= L x;2' mod,2_ 

[

w-1 J 
t=O , 

= [I: x;2;] mod zk 
t=O 

k-1 

= Lxizi 
i=O 

In this derivation, we make use of the property that 2; mod 2k = O for any i =:: k . 

• 
" A similar property holds for truncating a two's-complement number, except 

that it then converts the most significant bit into a sign bit: 



I_<-____ -~- --

82 Chapter 2 Representing and Manipulating Information 

' I 
f 
' 

PRINCIPLE: Truncation of a two's-complement number 

Let x be t\le_,git v<;ctor [xw-l• xw-2• ... , xo), and let:~ be the result qifltJunca,t_ing 
it to k bits:¥'= [xk-l• 'xk_2, ... , x0]. Let x,= B2T w(x),i'!}d x' = B2I;k(x'). Th¥n 
x' = U2T k(x mod 2k). • 

In this formulation, x mod 2k will be a number bf>tween 0 ~nd 2k - 1. Ayplying 
function U2T, to it will have the effect of conyerting the most significant bit x,_1 
from having;weight 2k-l to having weight -2k-l. We can see this with the example 
of convertingv.alue x = 53,191from int to short. Si,n~e 216 = 65,536 2'.;c, we have 
x mod 216,= x .. But when we convert this number, to a 16-bit two's-complement 
number, we get x1="53,191- 65,536 =r -12,345. 

DE~IVATlpN: Truncation of a"two's-comp,lement number 

Using a similar argm:µent to the one we used for truncation of an unsigned number 
shows that 

~J ..... k' 
B2T w([xw-1• Xw-2• ... , xoD mod 2 = B2U,([xk-l• xk-2• · · ·, xo)) 

That is, x mod 2k can be represented ~y an unsigned numb~r having bit-level rep
resentaticirl1[ik-l• x,_2 , ... , x0]._Converting this to a two's-comple!Jlent number 
gives x' = U2T ,(x mod 2'). • 

Summarizing, the effect of truncation for unsigned numbers is 

" 
B2U,([xk-l• xk-2• ... , xo)) = B2U wC[xw-1• xw-21 ' .. , xo)) mod 2k (2.9) 

1' ~'· 
while the effect for two's-complement numbers is 

~1a~!lceTift;®rew:Ji.2~~~JiiJil>~~:~.;:;i~iW:.~~;,. :~ 
Suppose we truncate a 4-bit value (represented by hex digits 0 through F) to a 3-
bit value (repres~nted as hex digits o throu'gh 7.) Fill in the table below showing 
the effect of this truncation for sbme cases, in terms of the unsigned and two's
complement interpret~\ions of those bit patterns. 

•t I 

Hex 

Original Truncated 

0 0 

2 2 

9 1 

B 3 

F 7 

Unsigned 

Original Truncated 

0 ----
2 ----
9 ---

11 ----
II •( 

15 ---

1\vo's complement 

Original 

0 
2 

-7 
-5 
-1 

Truncated 

Explain how E9uations 2.9 and 2.10 apply to the,se cases. 
' ~ I ' ' ~ 

" 



Section 2.2 Integer Representations 83 

2.2.8 Advice on Signed :versus Unsigned 

As we have seen, the implicit casting of signed to unsigned leads to some non
intuitive behavior. Nonintuitive features often lead to program bugs, and ones 
involving the nuances of implicit casting can be especially difficult to see. Since the 
casting takes place without any clear indication in the code, programmers often 
overlook its effects. 

The following two practice problems illustrate some of the subt/e errors that 
can arise due to implicit casting and the unsigned data type. 

fP&H;ceiRiOmerrnz;~-:1S01trticiffiiliili~'if1\ :·:. :· : :·§\ :'.: :<::: ¥ ;_ : : · ,-:; :J 
Consider the following code that attempts to sum the elements of an array a, where 
the number of elements is given by parameter length: 

/• WARNING: This is buggy code •/ 
2 float sum_elements(float a[], unsigned length) { 
3 int i; 
4 float·result = Oj 
5 

6 for (i = Oj i ;<::::1 length-.1; i++) 
7 result+= a[i]; 
B return resulti 
9 } 

When run with argument length equal to 0, this code should return 0.0. 
Instead, it encounters a memory error. Explain why this happens. Show how this 
code can be corrected. 

fi!ta¢tl&,e·P[(!61€ii.hli~~islir@Wi'eag~~Jbt11, ,J,. ~. ~% m·<>\- :,,. C~ ;; ; ~ : d 
You are given the assignment of writing a function that determines whether one 
string is longer than another. You decide to make use of the string library function 
strlen having the following declaration: 

I• Prototype for library function strlen •/ 
size_t strlen(const char •s); 

Here is your fifst. attempt at the ('unction: 

/* Determine whether string s is longer than string t */ 
I• WARNING: This function is buggy •/ 
int strlonger(char •s, char •t) { 

return strlen(s) - strlen(t) '> O; 
} 

When you test this on some sample data, things do·not seem to work quite 
right. You investigate further and determine that, when compiled as a 32-bit 



i' 

" I 

i . , 
l 

-- - --

84 Chapter 2 Representing 'and Manipulating Information 

program, data type size_t is defined (via t)'pedef) in header file stdio .h to-be 
unsigned. 

A. For what q&es will this function produce an incorrect rpsult? 

B. Explain how· this incorrect result eomes about. 

C.' Sho,\, how to fix the code so that it will work reliably. 

We have seen multiple ways in which the subtle features of unsigned arith
metic, and especially the implicit conversion of signed to unsigned, can lead to 
errors or vulnerabilities. One way to avoid such bugs is to never use unsigned 
numbers: In fact, few languages other thap C support unsigned integers. Appar
ently, these othe!' language designers viewed, them as m6re trouble than they are 
worth. For example, Java supports only signed integers, and it requires that they 
be implemented with two's-complement arithmetic. The normal"right shift oper
ator» is guaranteed to perform 'an arithmetic sliift. The special operator»> 'is 
defined to perform a logical right shift. 

Unsigned values are very useful when we want 't'o think 6'f words as just col
le~tions of bits- with no numeric interpretation. This occurs, for example, when 
packing a word with flags describing various Booleliii conditions. Addresses are 
naturally unsigned, so systems programmers find unsigned·cypes to be helpful. 
Unsigned values are also useful when implementing mathematical packages for 
modular arithmetic and for multiprecision arithmetic, in which numbers are rep
~esented by arrays of words. 

" 
2.3 Integer Arithmetic 

Many beginning programmers are surprised to find that adding two positive num
bers can yield a negative result, and that the comparison x < y can yield a different 
result than the comparison,>;-y < O,,These properties are artifacts of the finite na
ture of,computer arithmetic. Understanding the nual)ces of computer arithmetic 
can help programmers write more reliable code. 

2.3.1 Unsigned Addition • 

Consider two nonnegative integers x and y, .such that 0 :'.S x, y < 2w. Bl;lch of 
these values can be represented by aw-bit unsigned number. If we coinputelheir 
sum, however, we have a possible range 0 :'.S,x + y :'.S 2w+i __ 2. Representing this 
sum could require w + 1 bits. For example, F,igure 2.21 shows a; plot of the func
tion x + y when x and y have 4-bit representations. The,a~guments (shown on 
the horizontal axes) range from 0 to ~Sjmt the.sum range~ fro!)l'O to 30, The 
shape of the function is a sloping plane (the function is linear in both dimel\
sions). If we were to maintain the sum as a (w + 1)-bit number and add it to 
another<value, we may require w + 2 bits, and so on. This continued ''word size 

'·~· 



32 

28 

24 

20 

16 

12 

8 

4 

0 

Section 2.3 Integer Arithmetic 85 

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits. 

inflation" means we cannot place any bound on the word size required to fully rep
resent the results of arithmetic operations. Some programming languages, such 
as Lisp, actually support arbitrary size arithmetic to allow integers of any size 
(within the memory limits of the computer, of course.) More commonly, pro
gramming languages support fixed-size arithmetic, and hence operations such 
as "addition" and "multiplication" differ from their counterpart operations over 
integers. 

Let us define the operation+~ for arguments x and y, where 0 ::= x, y < 2w, 
as the result of truncating the integer sum x + y to be w bits long and then 
viewing the result as an unsigned number. This can be characterized as a form 
of modular arithmetic, computing the sum modulo 2w by simply discarding any 
bits with weight greater than 2w-l in the bit-level representation of x + y. For 
example, consider a 4-bit number representation with x = 9 and y = 12, having 
bit representations [1001 J and [1100], respectively. Their sum is 21, having a 5-bit 
representation [10101]. But if we discard the high-order bit, we get [0101 ], that is, 
decimal value 5. This matches the value 21mod16 = 5. 



1
-~-

'I ~. 

-.--. ---

86 Chapter 2 Representing and Manipulating Information 

Aside Security vulnerability in getpeername 

In 20ol, programmers involved-in the FreeBSD open-source operatlng•syStems project realized that 
their implementation ,Of th~ getpeernaiiie lib;ary function had a security vtllner{lbility. A simplified 
version of their code went something like this: 

1 /• 
2 * Illustration of code vulnerability similar to that found in 
3 * FreeBSD 1 s .implamentatiol\ of~ getpeername {) 

4 •/ -.' 

5 
~. 

6 /* Declaration of library functioii .memcpy:, */, 
~ void *memcpy(void *dest, void,*src, size_t n); 

8 "; 
9 /* Kernel memory ,region holding us8r-acCessibl~ ""data */ 

10. #define KSIZE '1024 
11 char'kbuf[KSIZE]; 
12 

13 

14 

15 

16 

17 

18 

19 

I* Copy at most maxlen D)rteS from kernel region 'to user buffer */ 
int copy_from~kernel(vOid *user_dest, int,. maxlen) { 

/* Byte co~~ len is m'inimum ,of buffer siZe "ap~ ~m~1eh *I 
int len = KsrzE'· < rrlaxleh ? KSIZE : maxlen; 
memcpy(us"er_de~t, kbuf, len); 
return len; 

} 
"' ;, ,, ~. ~lo 

In this cone, we show the prototype for library fun!'tion memcpy on line 7, V{hich is designed to copy 
a specified number"of bytes n from one region of memory to another .. 

Th~ function copy _from_kernel, starting at line 14, is designed to copy some of the data main
tained by the operating system kernel to a· designated regi5n of memory accessible"to the user. Most "I 
of the data structures maintained by the' kernel ·sho!11d not be"readable by a'user, since they may co11-; 1 
tain sensitive information about other users and about other-jobs run"ning on th'e "system, but the region I 
shown as kbuf was fntended to be orieihat the user could tead. The' parameter maxlen i.S intended to be 
the length of the buffer allocated by the user and indicated by argument usei'-~desl;'. :rite computation 
at line 16 then makes s\lre that no more bytes are copied than'are available'in eithel'the so'\m;.e·or the 
destination buffer. •' 

Suppose, howe':er, that some malicious programmer writes code that calls copy _from_kernerwith ~ 
a negative value of maxlen. Then the rriinimum coffiputation~on line,J'6 will comPute'this value for len, 
which will then be passed a~ the parameter n fo memcpy. Note, h6weyer, that par11meter n is i:lecllire<fas 
having data type size_t. This data: type i~declaretl (via typedef) in the lillrary-file stdio th. Typically, if • ,,,,_ '- t 
is defined to be unsigned for 32-bit programs and unsigned long fo• 64-bit:progr~ms. Since argl)ment I 
n is·unsigned, memcpy will treatit as a very large positive nm)lber and attempt to' copy that ma)ly bytes I 
from the kernel region to the·bser's buffer. Copying that many bytes (at least z31) will not actually ' 
work, because the program will encounter invalid addresses in tb.e process, but:the program could read I 
regions of the kernel memoty for wl)iclt it:is rrot authorized. I •. 

i 
j 
1! 
I 
~ 
I 
1 
j 

1 



Section 2.3 Integer Arithmetic 87 

~~-'~?£>~ lf:l'tW,,,.., AA r. 'fl) •·"""" ~~-~ ""'°~ll<i .. '"o ~ 11flt't!!i.i'(Q/?';,-,,"1J/"""-' 'tit"'J,_- ''1< i~ 

Aside Security"iiulherability jri get'peername (continued)-
~ i' t ·'_ ~~ i ~ -,, f.1 ~ ~ 

'!:fe can see that this prpbleni qris_es due to the mismatch behy~en .. data t~pes: in one place the 
length parameie/ii.~igned; -in •anQtt\er place it·is·unsi~ned .. Such, mismatches can be ·a source pf bugs 
and, as this examplesllows, ~an ev~I\J~ad to security vulnerabilities. Fortunately, there were no reported 
cases where a programmer had exploited the vulnerability in FreeBSD. They issued a security advisory . ~- ·'· ·~ ' . 
"FreeBSD-SA;92:38.s1gned-error'' .advising system administrators on how to apply a patch that would 
remove 't11e .v11!nerabl!ity. The,b,;g'c:arl be.fixecj by declaring parameter max). en to copy ~from_kernel 
to.be of type sizeJo, to'be consistent with paramete)" n of memcpy. We. should also qeclare local variable 

., 'f. ,,.,,. ~ f 
len'and the retum•value to be of tyPe size_ t. "' 7 i 

"· ' ~ t, ~ .,,, 
~,, o,.,.,_ -.._,._-._, --.--;;,,. - • .,,. ""' ·~ ,,. _, .,,. ''" •~ - ~-.$.,,,,. - "~ .,._,ii ,,.,,, 

We can characterize operation +~ as follows: 

PRINCIPLE: Unsigned addition 

For x and y such that 0::; x, y < 2w: 

" { x + y, x+ y= 
w x+y-2w, 

x + y < 2w Normal 

2w ::; x + y < 2w+1 Overflow (2.11) 

• 
The two cases of Equation 2.11 are illustrated in Figure 2.22, showing the 

sum x + y on the left mapping to the unsigned w-bit sum x +~ y on the right. The 
normal case preserves the value of x + y, while the overflow case has the effect of 
decrementing this sum by zw. 

DERIVATION: Unsigned addition 

In general, we can see that if x + y < zw, the leading bit in the ( w + 1)-bit represen
tation of the sum will equal 0, and hence discarding it will not change the numeric 
v'jlue. On the other hand, if 2!" ::; x + y < zw+1, the leading bit in the ( w + 1)-bit 
representaiion of the sum will equal 1, and hence discarding it is equivalent to 
subtracting 2w from the sum. • 

An arithmetic operation is said to overflow when the full integer result cannot 
fit within the word size limits of the data type. As Equation 2.11 indicates, overflow 

x+y, 
2Wt-1 Overflow 

2• 

0 

Figure 2.22 Relation between integer addition and unsigned addition. When x + y 
is greater than zw - 1, the sum overflows. 



r-1- -~ -- ~ 

! 

I 
I 
I 

l 
! 

88 

- - -- ~- ------

Chapter 2 Representing and Manipulating Information 

16 

14 

12 

10 

8 

6 

4 

2 

0 

10 
14 

Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed 

modulo 16. 

--1. 

occurs when the two operands sum to 2w or more. Figure 2.23 ~hows a plot of the 
unsigned addition function for word size w = 4. The sum is computed modulo 
24 =16. When x + y < 16, there is no overflow, and x +:; y is simply x + y. This is 
shown as the region forming a sloping plane labeled "Normal." When x + y::: 16, 
the addition overflows, having the effect of decrementing the sum by16. This is 
shown as the region forming a sloping plane labeled "Overflow." 

When executing C programs, overflows are not signaled as errors. At times, 
however, we might wish to determine whether or not overflow has occurred. 

PRINCIPLE: Detecting overflow of unsigned addition 

For x and yin the range 0::: x, y::: UMaxw, lets= x +;',, y. Then the computation 
of s overflowed if and only ifs < x (or equivalently, s < y ). I 

As an illustration, in our earlier example, we saw that 9 +:; 12 = 5. We can see 
that overflow occurred, since 5 < 9. 



, SectioQ 2.3 Integer Arithmetic 89 

DERIVATION: Detecting overflow of unsigned addition 

Observe that x + y o:: x, and hence ifs did not overflo,w, we will surely haves o:: x. 
On the other hand, ifs did overflow, we have s ""x + y - 2w. Given that y < 2w, 
we have y - 2w "'." 0, and hences = x + (y - zw) < x. I 

~~am~:ai>:121zz;r&~,~~~~~a 
Write a function with the following prototype: 

I* Determine whether arguments can be added without overflow */ 
int uadd_ok(unsigned x, unsigned y); 

This _function should return 1 if arguments x and y can be added without 
causing overflow., J 

•' 
Modular additiorrforms a mathematical.sttucture known.as an.abelian group; 

named after the Norwegiall'mathematician Niels Henrik Abel (1802-1829~. That 
is, it is commutative (that's where· the "abelian" part coines in) and associative; 
it has an identity. element 0, and every element has an ·additive inverse. Let> us 
consider the set of w-bit unsigned numbers with addition operation+~. For every 
value x' there must be some value -~ x sue!\ th~t -~ x +~ x = 0. This additive 
inverse operation can be characteriZed as follows: 

PRINCIPLE: Unsigned negation 

for any number x such that 0 ::: x < 2w, its w-bit unsigned negation -~ x is given 
by the following: 

" {x, x=O 
-wx= 2w-x,, x>O 

This re,sult can ~yadily be derived by case analysis: 

DERIVATIO'N: Unsigned negation 

(2.12) 

I 

• 1 .... ~ ,, ~ • 
Whenx = 0, the additive inverse is clearly.O. For x > 0, consider, the value 2w - x. 

, ' • \ • • J •• , 

Obse'.ve that this µumber .if; in the rangl',,0 < 2w - x < 2w. yve ~an also see th~t 
(x + zw --!')mod 2w T 2~,mod 2w = 0. Hence it is the inyerse of x unaer +~. I 

" 
. ~f;lli!<f£r~Wc:Jl~~>i1 
.&,i,..,,.111~~ 

We can represent a bit pattern of length w =,4.with a single hex digit. Fpr an 
unsigned interpretation of these digits, us'e Equation 2.12 to fill in the following 
table giving the values and tliebil representations (in hex) of the uhsigned additive 
inverses of the digits shown. 



I 
I 

\ 

+--I 

• 
1 

I 

' 

I 
'! 
I 

---------- ............ - -· --- --- ---· -- . -------. - - --· 

90 Chapter 2 Representing and Manipulating Information 

Hex 

0 

5 

8 

D 

F 

x 

Decimal 
-· x 

Decimal Hex 

2.3.2 Two's-Complement Addition 

" 

With two's-complement addition, we must decide what to do when the result is 
either too large (positive) or too small (negative) to represent. Given integer 
values x and yin the range -2w-l s x, y s zw-l _ 1, their sum is in the range 
_zw s x + y s 2w - 2, potentially requiring ·w + 1 bits to represent exactly. As 
before, we avoid ever-expanding data sizes by truncating the representation.tow 
bits. The result is not as familiar mathematically as modular addition, however . 
Let us define x +~ y to be the result of truncating the integer sum x·+ y to be w 
bits long and then viewing the result as a two's-complement number. 

PRINCIPL~.: Two's-complement addition 

For integer values x and yin the range -zw-l :ox, y s 2w-l -1: 

{ 

x + y - zw, zw-l s x + y Positive overftow 1 
x +~ y =' x + y, -zw.-'l s x + y < zw-l Normal (2.13) 

· x + y + zw, x + y < -2w-l Negative overfiow 

• 
This principle is illustrated in Figure 2.24, where the sum x + y is shown on the 

left, having a value in the range -2w :ox+ y s zw -2, and the result of truncating 
the sum to a w-bit two's-complement number is sho\)'ll on the right. (The labels 
"Case l" to "Case 4" in this figure are fortlie case anaiysis of th~ formal derivation 
of the principle.) When the sumx + y exceeds T¥a:!fw (c;a,se4), we ~ay thatpQsitive 
overflow has occurred. In this case, the effect of truncation is to subtract 2w from 
ths sum. When.the ~um x + y is·u;;sthan"'i'Minw (case-1), V:e say th'at negatfye 
overflow has occurr'e'd. In thi~ case, thJ'effect of truncation is to add zw lo tlie sum. 
' Tile w-bit two's-complement sum of two number~ha~ the ex'acfsame bit: level 
representation as the unsigned sum. In fact, most computers use the same machine 
instruction to perform either unsigned or signed additiop. 

DERlv°ATIOl)I: Two's-fomplenient ~ddition 
Sinqe.. t}Vq's-complement addition has the exact saljle bit-leve~ representation as 
unsigned addition, we can characterize the operation +~ a,s one of convertil)g i~~ 
arguments to unsigned, performing unsigned addition, and then converting back 
to two's complement: 



Section 2.3 Integer Arithmetic 91 

Figure 2.24 x+y 
Relation between integer +2W 
an~ two's-complement 

Case4 addition. When x + y is 
less than -zw-l, there is a +2W-1 
negative overflow. When 

Case3 it is greater than or equal 
to zw-1, there is a positive 

0 overflow. 
Case2 

-2w--1 -2w--1 

Case 1 

(2.14) 

By Equation 2.6, we can write nu w(x) as Xw-12W + x and nu w(Y) as 
Yw-12w + y. Using the property that+;;, is simply addition modulo 2w, along with 
the properties of modular addition, we then have 

x +~ y ':" U2T w~nu w(x) +~nu w(Y)) 

= U2T w[Cxw-12w + X + Yw-12w + y) mod 2w] 

= U2;f w[(x + y) \IlOd 2w,l 

The terms xw-12w and Yw-i2w drop out sihce they equal 0 modulo 2w. 
To better understand this quantity, let us define z'as the integer sum z = x + y, 

z' as z' = z mod'zw, and z" as z 11
:::::: U2T w(z'). The value z" is equal to x +~ y. We 

cari divide the analysis into four cases as illustrated in Figure 2.24: ·· 

1. -2w ::5 z < -2w-l. Then we will have z' = z + 2w. :Ihis gives 0:::: z' < -2w-I + 
2w = 2w-1

. Examining Eqllation-2.71 we see that z/ is in ihe range such that 
z" = z'. This is the case of negative overflow. We have added two negative 
numbers x and y (that's the only-wafwe can have z < -2w-l) and obtained 
a nonnegative result z" = x + y + zw. 

2. -2w-l ::5 z < 0. Then we will again have z' = z + 2w, giving -2w-l + 2w = 
2w-l ::5 z' < 2w. Examining Equation 2,7, we see that z' is in such a range that 
z" = z' - zw, and therefore z" = z' - 2~·= z + zw - zw = z. That is, our two's
complement sum z" equals the integer sum x + y. 

3. 0 ::5 z < 2w-
1
. Then we will have z' = z, giving 0 ::5 z' < 2w-l, and hence z" = 

z' = z. Again, the two's-complements.um z" equals the integer sum x + y. 

4. 2w-l :'.:: z < 2w. We will again hav6 z' = z, giving zw-l ::5 ,·, < 2w. But in this 
range we have z" = z' - 2w, giving z" = x + y' - zw. This is the case of positive 
overflow. We have added two positive numbers x and y (that's the only way 
we can have z:::: 2w-l) and obtained a negative result z" =x + y - 2w. I 



92 Chapter 2 

I 
I 

I 
\ 

:! 

I 
11-

I 

I 
'~; 

I 

Representing and Manipulating Information 

x y x+y x +~ y Case 

-8 -5 -13 3 1 
[1000] [1011] [10011] [0011] 

-8 -8 -16 0 1 -. 
[06001 [1000] [1000] [10000] 

-8 5 -3 "'T• _.3 2 
[1000] [0101] [11101] [1101]'., 

2 5 7 7 3 

[0010] [0101] [00111] [0111] 

5 5 10 -6 4 

[0101] [0101] [01010] [1010] 

figu~e 2.25 Two's-col"plemen,t addition examples. Thi' bit-level representation of 
the 4-bit two's-complement sum can be obtained by performing binary addition of the 
operands anp vuncating the result to 4,bits. 

As illustrations of two's-complement addition, Figure 2.25 shows some exam
ples when w = 4. Each example is labeled by the case to which it corresponds in 
the derivation of Equation 2.13. Note that 24 = 161 and hence_ negative overflow 
yields a result 16 more than the integer sum, and positive overflow yields a result 16 
less. We include bit-level representations of the operands and the result. Observe 
that the result can be p,btained, by perfprmil)-g J1inary addition of the operal\d~ and 
truncating the result to 4 bits. 

l'.igure 2.26 iJ!µstrates two's-complement addition for word ~ize w = 4. 1he 
operands range between -8 and 7. 1\Yhen x + y < -8; two's-complement addition 
has a negative overflow, causing the sum to be incremented by 16. When -8::; 
x + y < 8, the addition yields x + y. When x + y :". 8,.the. addition has a positive 
overflow, causing the sum to be decremented by .16. Each of these three ranges 
forms a SlOj)ing plane_ in the figure. I 

Equation 2.13 also lets us identify the cases where overflow has occurred: 

PRINCIPLE: Detecting overflow in two's-complement addition 

For x and yin the range TMinw::; x, y::; TMaxw,let s == x +:,, y. Then the compu
tation of s has had positive overflow if and only if'X. > 0 and y > 0 buts ::; 0. The 
computation has had negative overflow if and only if x < 0 and y < 0 buts :". 0. I 

Figure 2.25 shows several illustrations of this pJinciple for w =; 4. The.first 
en!FY shows a case of negative overflo"(, where two negative numbers sum to a 
positive one. The final,"\ltry shows a case of positive overflow, where two positive 
numbers sum to a negative Ol}e. 

- -------- -----~~-- --"~,,,:__, 



8 

6 

4 

2 

0 

22 

24 

26 

28 

Section 2.3 Integer Arithmetic 93 

Figure 2.26 Two's-complement addition. With a 4-bit word size
1 

addition can have a 
negative overflow when x + y < -8 and a positive overflow when x + y ::: 8. 

DERIVATION: Detecting overflow of two's-complement addition 

Let us first do the analysis for positive overflow. If both x > 0 and y > 0 buts s 0, 
then clearly positive overflow has occurred. Conversely, positive overflow requires 
(1) that x > 0 and y > 0 (otherwise, x + y < TMaxw) and (2) thats s 0 (from 
Equation 2.13). A similar set of arguments holds for negative overflow. I 

~'.~. ;.],p,'[ki]lfilU'>~>rnWl'~~-~l;i;;.'<;7,~.,.~~~~,7~~;!Et'i ~l ~~ ~~1SULB89£t' .. 'U-J,,,,,;rffJ;E,~~~J.,..;,,'>;'Affilf4.~.,,~nm.,.,,.~~·., 
Fill in the following table in the style of Figure 2.25. Give the integer values of 
the 5-bit arguments, the values of both their integer and two's-complement sums, 
the bit-level representation of the two's-complement sum, and the case from the 
derivation of Equation 2'.13. 

x y x+y x +~ y Case 

[10100] (10001] 



94 Chapter 2 

I 
' 

- -- --- - . - . ·- . 

Representing and.Manipulating Information 

x y x+y x +5 y Case 

---- --- --- -----
[11000] [11000] ----- ----

.j 

[10111]. [01000) ----- --- ----

----
[00010] [00101] 

---- --- ----
[01100] [00100] --- ---

Write a function with the following prototype: 

I* Determine whether arguments can be added without overflow */ 
int tadd_ok(int x, int y); 

' This function should return 1 if arguments x and y can be added without 
causing overflow. 

~i Ft<>o1em12.nt:!~iiii!il2rtlille,1$3l~*~"'~i"*'ll'ti.~~!11i~ 
Your cow6rker gets'impatient with your analysis of the overflowconditions for 
two's-complement audition and presents you with the following implementatiorl 
of tadd_ok: 

/* Determine whether arguments can b~ added without overflow */ 
/• WARN~NG: This code is buggy. •/ 
int tadd_ok(int x, int y) { 

'' ' { .. 
int sum = x+yi 
~eturn (sum-x == y) && (sum-y == x); 

} 

You look at the code and laugh. Explain why. 

•' 

mlliti1er&mm~2~~mf~~~1'&~1t::s 
You are assigned the task of wriiing code for a function tsub_ok, witJ:l,arguments 
x and y, that will return 1 if computing x-y does not cause overflow. Having just 
written the code for Problem 2.30, you write the foll9wing: 

/* Determine whether arguments can be subtracted without overflow */ 
/• WARNING: This code is buggy. •/ 
int tsub_ok(int x, int y) { 



Section 2.3 Integer Arithmetic 95 

return tadd_ok(x, -y); 
} 

For what values of x and y w\ll this fu)lction give incorrect results? Writing a 
corre9t -:ersion of this function.is left as an exercise (Problem 2.74). 

2.3.3 Two's-Complement Negation 

We can see that every number x in the range TMinw :'.': x ~.TMaxw has an additive 
inverse under+~, which we denote-~ x as follows: 

PRINCIPLE: 1\vo's-complement negation 

For x in the range TMinw::; x::; TMaxw, its two's-copiplement negation-~ x is 
given by the formula 

_, x = { TMinw, 
w -x. 

x= TMinw 

x > TMinw 
(2.15) 

I 

That is, for w-bit two's-complement addition, TMinw is its own additive in
.verse, while any other value x has·-x as its additive inverse. 

DERIVATION:. Two's-complement negation 

Observe that TMinw + 'l'Minw = -2w-l + -2w-l = -2w. This would ca11se nega
tive overflow, and hence TMini» +~ TMirzw = -2w + 2w = 0. For values of x such 
thatx >'TMinw, the value - x can also be represented as aw-bit two's-complement 
number, and their sum will be - x + x = 0. I 

w-~r~eYiif!ih'l@bl'fil:,;;z111~~~i!~~\. ~~'IJ. .. ~ 
We can represent a bit pattern of length w = 4 with a single hex digit. For a two's
complement interpretation of these digits, fill in the following table to determine 
the additive inverses of the digits shown: 

x -4x 
Hex Decimal Decimal Hex 

0 ---- ----
5 ---- ------
8' ---- ----
D ----- ----·- -----
F ·, 

What do you observe 'about the' bit patterns generated by two's-complement 
and unsigned (Problem 2.28) negation? 



! ' 

lli11 

'I 

'~ 

·I ,I 
l 

"I 

96 Chapter 2 Representing and Manipulating Information 

~ '•<,, ' ' - ~ /;._ -$•·,,.,, 't;,, ,,.,,~· ~o 

Wli&,·Aslde DATA:TNEG ~it'l~vei ·repre~entation of t"'lo's-comp1eihe~t negation " , 
~ ,,- ~ 

There are·several clever ways to determine the two's-complement negation.of ava\ue represe~ted 
at the bit level. Thl> foii'Owihg 1wo·t~cJ\niqu~g:at~15i\th useful, stlchi~,f "'1ten 'onl<irl:'Counl~rs the 'value 
Oxfffffffa when d~b'!gging ~ progr~m-::~nd thl:J l;nd .i!is\gnt lnto'the nlil!!rl'ot'ti!e tWb'S-COTpleiti~1W' 
representation. ~ 

One technique for perfomiingtWo's-cqn;tpleµient pegatjoh at the b}tlev;i is to complement the bits ! 

'and tjien increment, the result. In C, weian st.ate that for any ihteger.vpli.ie x',\CO!flputin~theexpressfirns , 
~ "'•'< " ' 'I •. 

~x and -x +•l will give identical results, · 
~Here>aresome~eQtmPte§With}l4~&it\vqrd·Sit~: ~ '"~~ ot>l,-f•~~ "'~ ;t -> _ "1 i 

~ ",. ~ ... , ;>.- 11)- p t •h- i' ~- .. ,_ ' ~-· ~;" ' ~ 't 

x 
101011 
[0111) 
[1100] 
[0000] 
[1000] 

5 
7 

-4 
0 

-?' 

[1pioJ 
'[1000) 

, ,fOO!lJ 
'[1).111 

(ou~r 

" ,incr(-x) 

_:'6 (1.011r -5 
.-8 [1001J -1' 

~- [OloOJ 4 

':.{<''-ll 4~f ~( "'l'J "'" 
,. 

' 
• "'.\, "'II " ' i· "· 1 

' a A 

-;.1 {0000]' 0 . .q: I , ,., 1oop] . ~~? . 

For our earlier example, we kn~w that.the cornplemerit.of Oxf is Oxo. art'tl tlfe complement of Oxa 
is Ox5, andso Qxfd"fJla'.is.Jlle.two;$:F~lnni~l!1'e,hfi',<;presen\~tio9 oJt,.;P.l,. , • • • " , ', '', 

A secon,d,w,ay to perform two's-,complellJent .. negation of~ n,umper 'll: Js,twed on~sp(!\ting \hi' git, ·1 
vector into two pa~ts. iet k ge the position of the rightmost 1, so tqe bit-level representatiomifx has the I 
formlxw-1' xw_z, ... , xk+j, '1, 0, ... Q). (This is possible asJong•as x'i'o.);Ihenegatioil:'i!!Thedwritten l 
in binary foQil as [~.x,K.,,1' -.vMl,~·,,,, -·x;,.-t;kL~ ... -., O]. Tji[j,t is, we 9om~l~!l1.'\l'l'!'ac,JiJ:iit to, the l~ttpf,, J 
bit position k. t i, • ~,h' ~ J%1 ~ _ ~~'* ~ -1>- ~·~1' _ """~,~ ~ , ;-~ ht~ ( 
. . We illustrate this [dea wjtl1,sbfu~'\:\>i\Pn~bf;i~.,\Yl!,~r~5ye highL\!lhnP~righ~plOSt patt;111+1 ?•.· . ;' ,.o i 
t:(Llfahcs: , . •1 * - f.l . 

x 

[jlOO] -4 
[1000] -8 
[0101] 5 
[OlU] 7 

• . , - e;:t1 - t 

-x· ' ' j 
[0100] 

. .'ffe.~t ~ 4 ' 
.; "{lOOO]t• ~J3~ ' t f,t 11,J ~ (!;!!> L. .. " H. ~~~ .,.i . " 

'[10Ht "-5' t- .· h-l~ · l· .'h ;\_,;IJ "' ,,4 
" 

[loOlJc ..:.7 .~ 1"ffe l) , •.!" '.hf.~ 
" >I 

"''""' .,·~ ""' 

2.3.4 Unsigned Multiplication 

Integers x and y in the range 0 ~ x, y ~ 2w - 1 can be represented as w-bit un
signed numbers, but their product x · y can range b,etween 0 and (2w - 1)

2 = 
22w - 2w+l + 1. This could require as many as 2w bits to represent. Instead, un
signed multiplication in C is defined to yield thew-bit value given by the low-order 
w bits of the 2w-biqnteger product. Let us denote thi~ _yalue as f ·~ y. 

Truncating an unsigned number to w bits is equivalen,t ~o computing its value 
modulo 2w, giving the following: 

------ - -

' 



PR I N c I P,LE,; p,nsigned multiplication 

For,x,and y such that,0 ::$,->', y :s: UMax,w; 

x ·~ y = (x · y) mod 2w 

2.3.5 Two's-Complement Multiplication 

' 

Section 2.3 lhteger Arithmetic 97 

(2.16) 
I 

Integers x and yin the range -2w-l :s: x, y :s: 2w-l _ 1 can be represented as w-bit 
two's-complement numbers, but· their product.< . y can range betwe1'n -2w-1. 
(2w-l - J..) = -22w-Z +"2w-]. •and -2w-l, ~2w-l = 2?w-2• This.'could require as 
many as 2w bits to represent in two's-complement•form'. Instead, signed multi
plication in C generally is performed by truncating the 2w-bit product to w bits. 
We dy,note t~~s raJue as -r •;,, ~,, Tryncating a two:~-complement number to U: bits 
is equivalent to first computmg its value modulo 2w and then converting from 
unsigned to two's complement, giving the following: 

PRINCIPLE: 1\vo's-complem'ent multiplication 

For x and y such that TMin;,, :S: x, y :S: TMaxw: 

x ·~ y = U2T w((x · y) mod2w) (2.17) 
I 

' We claim that the bit-leveJ representation bf.the product operation is id~ntical 
for both unsigned and two's-complement multiplicalion, as stated by the following 
principle: 

PRINCIPLE: Bit-level equivalence of unsigned and two's-complement multipli
cation 

Let x and y be bit vectors·oflength w. Define integers x and y as the Values repre
sented by these bits in two's-co)llplement form: x = B2T w(x) and y = B2T w(y). 
Define nonnegative integers x' and y' as the values represented by these bits in 
unsigned form: x' = B2Uw(x) and y' = B2Uw<.Yl. Then 

I 

As illustrations, Figure 2.27 shows the results of multiplying different 3-bit 
numbers. For· each pair of bit-lever operands, we perform both unsigned and 
two's-complement_ multiplication, yielding 6-bit products, and then truncate these 
to 3 bits. The unsigned truncated product always equals x · y mod 8. The bit
level representations of both truncated products are identical for both unsigned 
and two's-complement multiplication, even though the full 6-bit representations 
differ. ' 



~----- - - --

98 Chapter 2 Representing and Manipulating Information 

Mode 

Unsigned 
1\vo's complement 

Unsigned 
1\vo's complement 

Mode '' Truncated x · y x y x·y 

Unsigned 5 [101] 3 [Ollf 15 [001111] 7 [111] 

Two's complement -3 [101] 3 [011] -9 [110111] -1 [111] 

Unsigned 4 [100] 7 [111] 28 [011100] 4 [100] 

Two's complement -4 [100] -1 [~11] 4 [000100] -4 [100] 

Unsigned 3 [011] 3 ,[ON] 9 ·[00100\} 1 [001] 

1\vo's complement 3 [011] 3 [011] 9 [001001] 1 [001] 

Figure 2.27 Three-bit unsigned and two'~-complement multiplication exampleS< 
Although the bit-level representations of the full products may differ, those of the 
truncated products are identical. 

DERIVATi'ON: Bit-level equivalence of unsigned and two's-complement multipli-
cation 

11 
) 

From Equation 2.6, wehavex' =x + Xw-12w and y' = y + Yw-lzw. Computing the 
product of these values modulo 2w gives the following: 

(x' · y') mod zw = [(x + Xw-12w) · (y + Yw-12w)] mod 2w 

= [x. y + (Xw-IY + Yw-1x)2w + Xw-!Yw-12
2

w] mod 2w 

= (x · y) mod 2w 

(2.18) 

The terms with weight 2w and 22w drpp out due to the modulus operator. By Equa
tioq f..17, we hr;ve x ·~ y = U2T wC(x ·. y) mod 2w). We can apply the operation 
n U w to both sides to get ' 

nu wCx ·~ y) =nu wCU2T wCCx · y) mod 2w)) = (x · y) mod 2w 
' ' . 

Combining this result with Equations 2.16 and 2.18 shows that nu wCx ·~ y) = 
(x', y') mod 2w = :r:' •:'., y'. We can then apply U?Bw to both sides to get 

U2Bw(nU wCx ·~ y)) =' 'f2Bw(x *~ y) = U2Bw(x' ·~ y') 
I 

!fil2tifllr6J2mll1!;3y'ftitltlpn Ri§l:IS:l'S~:'l~i'.~i$~t:::t ~-i'.;J 
:fill in the following table showing the results of multiplying different 3-bit num
bers, in the style of Figure 2.27: 

x y x·y Truncated x :: y 

[100] [101] ---1 

[100] [101] -----' ' -~ 

[010] [111] 
,, 

[010] [lll] 

I ,; --- - - --- ---~- --- ---------==-~~~----~-r<-1 



Section 2.3 Integer Arithmetic 99 

Mode x y x·y 

Unsigned [110] 
[110] 

[110] 
[110] Two's complement 

re·ea'°tittearem:mrutc4a:~3miil2i:!:t:rffi~~z~'tr~n 
You are given the assignment to develop code for a function tmult_ok that will 
determine whether two arguments can be multiplied without causing overflow. 
Here is your solution: 

/* Determine whether arguments can be multiplied without overflow */ 
int tmult_ok(int x, int y) { 

} 

int p = x*y; 
I* Either x is zero, or dividing p by x gives y */ 
return !x I J p/x == y; 

You test this code for a number of values of x and y, and it seems to work 
properly. Your coworker challenges you, -saying, "If I can't use subtraction to 
test whether addition has overflowed (see Problem 2.31), then how can you use 
division to test whether multiplication has overflowed?" 

Devise a mathematical justification of your approach, along the following 
lines. First, argue that the case x = 0 is handled correctly. Otherwise, consider 
w-bit numbers x (x f" 0), y, p, and q, where pis the result of performing two's
complement multiplication on x and y, and q is the result of dividing p by x. 

,1. Show that x · y, the integer product of x and y, can be written in the form 
x · y = p + t2w, where t f" 0 if and only if the computation of p overflows. 

2. Show that p can be written in the form p = x · q + r, where Ir[< fx[. 

3. Show that q = y if and only if r = t = 0. 

mrcmmemf*sm1bllit1fifi~r~mt>i\:;!<¥£:.gt1Jit~tMii1<~-~ 
For the case where data type int has 32 bits, devise a version of tmul t_ok (Prob
lem 2.35) that uses the 64-bit precision of data type int64_t, withc\ut using 
division. 

lit~~?k?/$alliii~~Q!rlW1%:f,,"1~~--""'l;P';,'if ,J;,;1~t~ 
You are given the task of patching the vulnerability in the XDR code shown in 
the aside on page 100 for the case where both data types int and size_t are 32 
bits. You decide to .eliminate the possibility of the multiplication overflowing by 
computing the number of bytes to allocate using data type uint64_ t. You replace 

Truncated x . y 



100 Chapter 2 Representing and Manipulating Information 

Aside Security vulnerability in the XDR library 

In 2002, it was discovered that code supplied by Sun Microsystems to implement the XDR library, ;1 
widely used facility for sharing data structures between programs, had a security vulnerability arising 
from the fact that multiplication can overflow without any notice being given to the program. 

Code similar to that containing the vulnerability is shown below: 

1 /* Illustrat-ion of code,,.,,vul~.'.3rability similar to that found in 
2 * Sun's XDR library. 
3 •/ 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

void* copy_elements(void •ele_src[]. int ele_cnt, size_·t' ele_si~e) { 

} 

I• 
* Allocate buff~r for ele_cnt objects, each of ele_size bytes 
* and copy from locations designated by ele_src 

•/ 
void •reSult = malloc(ele_cnt * ele_size); 
if (result == NULL) 

I• malloc failed •/ 
retur~ NULL; 

void *nex~ = result; 
int i; ' 
for (i = O; 'i < e:ie_cnt; i++) { 

} 

/* Copy qbject i t9 d~stination */ 
memcpy(next, ele_s~c[i], ele_size); 
/* Move p6inter to ne~t memory reiion •/ 
next += e~e_size; 

' ' 

The function copy_elements is designed to c~py ele_cnt data structures, ea~h consisting of ele_ 
size bytes into a buffer allocated by the function on line 9. The number of bytes required is fOmputed 
as ele_cnt * ele_size. 

Imagine, however, that a malicious programmer calls this function with ele_cnt being 1,048,577 
(220 + 1) and ele_size being 4,096 (212) with the program compiled for 32 bits. Then the multiplication 
on line 9 will overflow, causing only 4,096 bytes to be allocated, rather than the 4,294,971-,392 bytes 
required to hold that much data. Th~ loop starting at line 15 will attempt to copy all of those bytes, l 
overrunning the end of the allpcated buffer, and therefore corrupting other data structures. This could 1 
cause the program to crash or otherwise misbehave. 

The Sun code was used by almost every operating system ancLin such widely used programs as 
Internet Explorer and the Kerberos authentication system. The Computer Emergency Response Team 
(CERT), an organization run by the Carnegie Mellon Software Engineering Institute to track security j 
vulnerabilities and breaches, issued advisory "CA-20Q2-25," and many companies rushed to patch their ! 

code. Fortunately, there were no reported security.breaches caused by this vulnerability. ! 
A similar vulnerability existed in many implementations of the library function callee. These j 

have since been patched. Unfortunately, many,programmers call allocation functions, such as malloc; 
usi,ng arithmetic expressions as arguments, without checking these expressions for overflow. Writing a 
reliable version of calloc is left as an exercise (Problem 2.76). 



Section 2.3 Integer Arithmetic 101 

the original call to rnalloc (line 9) as follows: 

uint64_t asize = 

ele_cnt * (uint64_t) ele_size; 
void *result = mallo"c(asize); 

'Recall that' the argument to malloc has type'size_t. 

A. Does your code provide any improvement over the original? 

B: How would you change the code to eliminate the vulnerability?' 

2.3.6 Multiplying by Constants 

Histori~ally, the integer 'multiply instruction ort many machines was fairly slcJw, 
i;equiting 10 or more clock cycles, whereas other integer operations-,suc!J.. as 
.i!ddition, subtraction, bit-level operations, and shifting-required only l 'cloc.k 
cycle. Even on the Intel Core i7 Haswell we use as our reference machine, integer 
multiply requires 3 clock cycles. As a consequence, on~ important optimization 
used by compilers is to attempt to replace multiplications by constant factors with 
combinations Of shift· and addition operation~: We will-first consider the case Gf 
multiplying by a power of 2, and then we will generalize this to arbitrary constants . 

• 
PRINCIPLE: Multiplic;ation by a power of2 

Let x be the unsigned integer represented by bit'pattem [x,i,_1, xw-2• ... , xoJ. 
Then for any k !:: 0, the· w +-k-bit unsigned' representatioh bf x2k is given by 
[xw-1> xw-2• ... , xo, 0, ... , OJ, where k zeros have been added to1tl1e right. I 

l , 

So, for example, 11 <;an be rer<l'"J'.J).ted for w = 4,ijs.[1011 ]._Shi{ting tl:).is left 
by k = 2 yields the 15-l;iit vector [101.lOOJ, which encodes the unsigned number 
11, 4 ='kl;. 

DERIVATION: Multiplication by a power of2 

This property can be derived using Equation 2.1: 

w-1 

" "+k B2U w+k(\xw-I>,Xw-2• ... , Xo, 0, ... , OJ)= L_, x12' 
i=O 

I 

When shifting left by kfor a fixed word size, the high-order k bits are discarded, 
yielding 

[xw-k-1• Xw-k-2• · · · • xo. 0, · · · , O] 



~~---· --~----~----::_-.---···· --- -
I - --~ -- . ··- - -

'i 

I 
I 
I 

I 
I 

102 Chapter 2 Representing and Manipulating Information 

but this is also the case when performing multiplication on fixed-size words. We 
can therefore see that shifting a value left is equivalent to performing unsigned 
multiplication by a power of 2: 

PRINCIPLE: Unsigned multiplication by a power of 2 

For C variables x and k with unsigned values x and k, such that 0:::: k < w, the C 
expression x « k yields the value x *~ 2k. I 

Since the bit-level operation of fixed-size two's-complement ~rithmetic is 
equivalent to that for unsigned arithmetic, we can make a similar statement about 
the relationship between left shifts and multiplication by a power of 2 for two's
complement arithmetic: 

PR! NCI PLE: 1\vo's-complement multiplication by a power of 2 

For C variables x and k with two's-complement value x and unsigned value k, such 
that 0:::: k < w, the C expression x « k yields the value x ·~ 2'. I 

Note that multiplying by a power of 2 can cause overflow with either unsigned 
or two's-complement arithmetic. Our result shows that even then we will get the 
same effect by shifting. Returning to our earlier example, we shifted the 4-bit 
pattern [1011] (numeric value 11) left by two positions to get [101100] (numeric 
value 44). Truncating this to 4 bits gives [1100] (numeric value 12 = 44 mod 16). 

Given that integer multiplication is more costly than shifting and adding, many 
C compilers try to remove many cases where fill integer is being multiplied by a 
constant with combinations of shifting, adding, and subtracting. For example, sup
pose a program contains the expression x•14. Recognizing that 14 = 23 + 22 + 21, 
the compiler can rewrite the multiplication as (x«3) + (x«2) + (x«1), replac
ing oi\e multiplication with three shifts and two additions. The two computations 
will yield the same result, regardless of whether x is unsigned br two's comple
ment, and even if the multiplication would cause an overflow. Even better, the 
compiler can also use the property 14 = 24 - 21 to rewrite the multiplication as 
(x«4) - (x«1), requiring only two shifts and a subtraction. 

ifr~ii~f!2Rl~tlv':Z3fal'!or~!(2~~~~i~8}1f~;::,f;i:IE!~~~ 
As we will see in Chapter 3, the LEA instruction can perform computations of 
the form (a«k) + b, where k is either 0, 1, 2, or 3, and b is .either 0 or some 
program value. The compiler often uses this instruction to perform multiplications 
by constant factors. For example, we can compute 3•a as (a«1) + a. 

Considering cases where bis either 0 or equal to a, and all possible values of k, 
what multiples of a can be computed with a single LEA instruction? 

Generalizing from our example, consider the task of generating code for 
the expression x • K, for some constant K. The compiler can express th\' binary 
representation of K as an alternating sequence of zeros and ones: 

------ --- - ---- - --- - - - ~:r 

- -- -



Section 2.3 Integer Arithmetic 103 

[(0 ... 0) (1. .. 1) (0 ... O).· · · (1. .. 1)] 

For example, 14 can be written as [(O ... 0)(111)(0)]. Consider a run of ones from 
bit position n down to bit position m (no:: m). (For the case of 14, we haven= 3 
and m = 1.) We can compute the effect of these bits on the product using either of 
two different forms: 

For)Il A: (x«n) + (x«(n -1)) + · · · + .(x<vn) 

Form B: (x<<(n +1)) - (x«m) 

By adding together the results for each run, we are able to compute x • K with
out any multiplications. Of course, the trade-off between using combinations of 
shifting! adding, and sublractin'g versus a sjngle multiplication instruction depends 
on the relative speeds ofihese instructions, and these can be highly machine de
pendent. Most compilers only perform this optimization when a small number of 
shifts, adds, ancj subtractions suffice, " .. 

!lff.•)WKllimJt~§!lt!~~il~ 
For each of the following values of K, find ways to express x • K using only the 
specified number of operations, where we ·con~i1:1er. both additions' and subtrac
tioqs to have comRaraple co~t. You may need to l]Se s9me tricks beyond the simple 
form A and B rules we have considered so far. 

K • Shifts ,Add/Subs Expression 

6 2 1 
31 1 1 ---- t l 

-6 2 1 ---
55 2 2 

~~"m· ·~~~!~•.t&i'~&ff~R~f,,!!ll ,. - .........; •. '-~M. s - I : - " ~\.;-,:..1_)., .I'"!,;''~;~, .. .;~~-~:'· ·.~,,.,,..~! 

Fdr a run of one~ ~tarting at bit IJosttion /i·dbwn fo'bit position m (n o::_ m );we saw 
that we earl generate 'fwo forms of code, A and B. How should: the compiler decide 
,_;fui:!i' form'ta jise? 

2.3.7 Dividing by Powers of 2 

Integer division on most machines is even slower than integer multiplication
requiring 30 or more clock cycles. Dividing by a power of 2 can also be performed 



1 
- - ..... -----· ·- -- ----- -- - ----

104 Chapter 2. Representing and Manipulating Information 

k » k (binary) Decimal 1'2,340/2k 

0 0011000000110100. 12,340 12,340.0 
1 0001100000011010 6,170 6,170.0 

4 00000011oooooo.i1 771 771.25 

8 0000000000110000 48 48.203125 

Figure 2.28 Dividing unsigned numbers by powers of 2. The examples illustraie 
how performing a logical right shift by k has the same effect as·dividing by 2k and then 
rounding toward zero. 

using shift operations, but. we use a right shift rather than- a left shift. The two 
different right shifts-logical and arithmetic~serve this p.urpose for unsigned and 
two's-complement numbers, respectively: ,, 

Integer division always rounds 'toward zero. To .define this precisely, let. us 
introduce some notation. For any real number a, define [aj to be the unique 
integer a' such that a'::: a< a'+ 1. As examples, [3.14J = 3, L-3.14J = -4, and 
[3J = 3. Similarly, define [al to be the unique integer a' s,uch that a' -1 <a::: a'. 
As examples, [3'14j = 4, [-3'.t41 =·-3, and [3f=" 3. For x > O'and y > 0, integer 
division should yield Lx /y J, while for x < o and y > o, it sliduld yield r x / y 1. That 
is, it should round down a positive result but round up a negative one. 

The case for using shifts with unsigned arithmetic is straightforward, in part 
because rig!it shifting is guaranteed to be performecj logically for unsigned values. 

f•i,' 

PRINCIPLE: Unsigned division.P;y a power of 2 

For C variables x and·k with unsiglted values x and k, such that o·::; k'< w, the C 
expression x » k yields the value Lx /2k J. I 

As examples, Figure 2.28 shows the effect's of performing 'logical right shifts 
on a 16-bit representation of 12,340 to perform division by 1, 2, 16, and 256. The 
zeros shifted in from the left are shown in italics. We also show the result we would 
obtain if we did these divisions with real arithmetic. These examples show that the 
result of shifting consistently rounds toward zero, as is the convention for integer' 
division. 

DERIVATION: Unsigned division by a power 9f 2, 

Let x be t)l.e unsigned inte&er representefl.·ll:x«bitJ>attern [xw-1• xw-2• . ., . •• xo], and 
let k be in t)le rangs. 0::: k <; UJ. ;Let x' be ihe unsigrn;d n\lmber ~th w .- k;bit 
representation [xw-1> xw_2, ... , xd, and let x" be the unsigned nqJilber withk.-\Ht 
representation [xk-1> ... , x0]. We can therefore see that x = zkx' + x", and that 
o ::: x" < zk. It therefore follows that Lx /2k J = x'. 

Performing a logical right shift of bit vector [xw_1.,xur,2td .. ,,,,xol by k J(ields 
the bit vector ' 

~ ---- -- - -- -- - ---=--- -- - ~=-=---=-=-----=--=-=---=---==- =-- -=-=------=---=------=- _f'"" I 



Section 2.3 Integer Arithmetic 105 

k » k (binary) Decimal -12,340/2k 

0 1100111111001100 -12,340 -12,340.0 
1 1110011111100110 -6,170 -6,170.0 
4 1111110011111100 -772 -771.25 
8 1111111111001111 -49 -48.203125 

Figure i1.29, Applying arithmetio ri!Jht shift. Th~ examples illustrate "that arithmetic 
right shift is similar to division by· a powe• of 2? except that it rounds down rather than 
toward zero. 

This bit vectqr has numeric.value x',which we have seen is the value that would 
result by computing the expression x » k. I 

',Ihe Cf\Se for div,idil'g ):Jy !' i?.O'Y~r of ?- w;ith. two's-coll!plement arithmetic is 
slightly more complex. First, th.e shifting sh9uld be perfoqn~d using, an arithmetic 
right shift, to e11sure that neg~tive values ·remain negative. Let us investigate what 
value such a right shift would' produce. 

PRINCI ~L~; '1\vo's-complement division by a power of 2, rounding down ,, 
!,et C variables x and k have two's-complement: value x and unsigned value 
k, respectively, sucl\,t)lat 0,:0·k"< w. The C expression x » k, when the shift is 
performed arithmetically, yields the.xalue L</2kJ. I 

For x.o:: Q, variable x has,O as th~
0

most'signi.Jicant bit
1 

and so
0
the effect of an 

arithmetic shift is the same as for a logical right shift. Thus, an arithmetic right shift 
by k is the same as division by 2k foi a nonnegalive nu~ber. A's ah ~xampfo of a 
negati~~ number,' Figure 2.29 si;:ows the effect ot'~pplying arithmetic right shift to 
a 161bit representation of -12;340 f~r different shift ~ounts. For the case when 
nb'rounding is required (k = 1), the res\llt will be x/2k. When rounding is required, 
shifting causes·the result to be rounded 'downward. For example, the shifting right 
by four ha~ the effec;t of rounding -171.25 down to - 772. We will need to adjust 
our strategy to handle qivision f,or negative values of x. 

DERIVATION: Two's-complement division by a power of 2, rounding down 

Let x be \he ~wo's-COplJ>l~ment iIJleger represe,nte!l by bit pattern [~w-l• xw_2 , 

... , x0], and let k be in· tne range 0 :o k < w. Let x' be the two's-complement 
numbe.r represented by the w - k bits [xw-I> Xw_2 , ... , xd, and let x" be the 
Jns'igned number rep~esen\edby th'e low-order k tilts.[xk-l•: .. , x0]. By a similar 
.analysis as 'the unsigned case, we have x = zk x' + x" and 0 :s x" < zk, giving x' = 
[x/2kJ. ·Furthermore, observe that shifting bit vector [xw-1> xw-2• ... , x0] right 
arithmetically by k yields the bit vector 

which is the sign extension from w - k bits tow bits of [xw-1> xw-Z• ... , xk]. Thus, 
this shifted bit vector is the two's-complement representation of [x /2k j. I 



rr 
' 

--

l 

I 
I 
J 

106 Chapter 2 

k 

0 
1 
4 
8 

_.., ______ - ... ·--

Representing and Manipulating Information 

Bias -12,340 +bias (binary) >'> k (binary) Decimal -12,340/2' 

0 1100111111001100 1100111111001100 -12,340 -12,340.0 
1 1100111111001101 1110011111100110 -6,170 -6,170.0 

15 1100111111011011 1111110011111101 -771 -771.25 
255 1101000011001011 1111111111010000 -48 -48.203125 

Figure 2.30 Dividing two's-complement numbers by powers of 2. By adding a bias 
before the right shift, the result is' roanded toward ~ero. 

We can correct for the improper rounding that occurs when a negative number 
is shifted right by "biasing" the value before shifting. 

PRINCIPLE: Two's-complement division by a power of2, rounding up 

Let C variables x and k have two's-complement value x"and 'unsigned value k, 
respectively,'such tharo ="' k ~ w. The C!exprd~onrt',/1- Ci «'1.<:J' - 1) >::; k, when 
the shiff"is perform ea arithmetically, yields the value. r x /2kl. I 

Figure 2.30 demonstrates how adding the appropriate bias before performing 
the arithmetic right shift causes the result to be correctly rounded. In the third 
column, we show the result of adding,the bia"s value to -12[:l40, with the lower k 
bits (those that will be shifted off to the tight) shown in italics. We can see that 
the bits to the left of these may or may not be incrementeCI. For the case where no 
rounding is ref!uir~~ (k = 1), addi,ng the bias only affeqts bits that are shifted off. 
For the cases w~ere rounding is required, adding the bias causes the .uP\'er bits to 
be incremenied, so that the result will be rounded toward zero. 

The bi'!sing te'chfii9ue e,xplolis·the property that r x / y l = Lex -1- y - 1) /y J for 
integers x and y such thaf~ >. 'o. As examples, wh'~n x = -30 and y = 4, we have 
x + y -1 = -27 and r-~0/41 = -7 =' L-,t714J. Whenx =; -32 and y,;,, 4, we'l}_ave 
x + y - 1 = -29 an}! r -32/41 = -8 = L-2,9/4J. '. 
DERIVATION: Two's-complement division by a power of 2, rounding up 

To see that rx/yl = l(x + y -1)/yJ, suppose that x = qy + r, where 0 :'Or< y, 
giving (x + i;-1)1,y =·q. + (r + y -1)/y, and so L(x +1x--1)/yJ = q + L(r -t y -
1)/y j. The latter t,erm will equal 0 when r =,0 and 1 wljen r > 0. That is, by adding 
a bias of y - 1 to x and then rounding the division do)Vhward, we wi)l get q when 
y divides x and q + 1 otherwise. 

~etuming to the case where y = 2k, the C e.'l'Pression ~ + (1 « kl '- 1 yielos 
the val'!e x +.2k - 1. Shifting this right arithrneti7all)'°by ~therefore yields r x /2kl 

' These analyses show that for a two's-complement machine 'using. arithmetic 
right shifts, the C expression 

(x<b ? x+(l<<k)-1 : x) >> k 

will compute the value x{2!f·. 



Section 2.3 Integer Arithmetic 107 

fi~dk~ :Bf1ib:@Jfl2m&i@iin l?D'iii'i Siii'"' :·raz; ! ·';;fa.:: :: ::: ,11 •·;::;:f· 'I 
Write a function div16 that returns the valne x/16 for integer argument x. Your 
function should not use division, modulus, multiplication, any condit,ionals (if or 
?:),any comparison operators (e.g.,<,>, or==), or any loops. You may assume 
that data type int is 32 bits long and uses a two's-complement representation, and 
that right shifts are performed arithmetically. 

We now S(\e that division by a power of 2 can be implemynted u~ing logici'-1 qr 
arithmetic right shifts. This is precisely the reason the two types of right shifts vare 
available 011 most m~cpines. Unfortunately, this approach does not generalize to 
division by arbitrary constapts. Unlike multiplication, we cannot express division 
by arbitrary constants K in terms of division by powers of 2. 

terS1ctice Probtiim:2ll ($olut19ii'.P\!l~llin; :;;;: ;:::~;~,; '. ?~>:?;;' :\!;J 
In the following code, we have omitted the definitions of constants M and N: 

#define M /• Mystery number 1 •/ 
#define N /• Mystery number 2 •/ 
int arith(int x, int y) { 

int result = O; 
result = x•M + y/N; /• M and N are mystery numbers. •/ 
return result; 

} 

We compiled this .code for particular Vjllues pf M and N. The compiler opti
mized thy multiplic,ation and division using the methods we ha ye discussed. The 
following is a translation of the generated machine code back into C: 

I• Translation of assembly code for ari th •/ ' 
int optarith(int x, int y) { 

} 

int t = x; 
x <<= 5; 
x -= t; 
if (y < 0) y += 7; 

y >>= 3; /• Arithmetic shift •/ 
return x+y; 

I 
What are the values of M and N? 

2.3.8 Final Thou\jhts on Integer Arithmetic 

As we have seen, the "integer" arithmetic performed by computers is really 
a form of modular arithmetic. The finite word size used to represent numbers 



"""-~--

I 

-------m -- -- - ----- - -

'108 Chapter 2 Representing and Manipulating Information 

limits the range of possible values, and the resulting operations can overflow. 
We have qlso seen that \he two's-coinplel\1-ent repn;~entation provides a ~lever 
ivay to represent_both negative and posi\1"ve values, whike using the same bit-level 

J• J • , ' ' '~1 ' 1· 
impleme11tf1tign~ a~_are used t9 perform unsign~<;l arithmetic-operations such as 
addition, sJbtraptfon, m(,ltinhc,ation, and even division have either i\lentical or ,- ;r, },I i I '.l f-'~ 

very similar bit-level behaviors, whetji.er the operands ar\' in P.nsigneo qr two's-
complement form. 

We have seen that some of the conventions in the C language can yield some 
suwrising results, and these can be sources of bugs that are harp to recognize or 
llnoerstand. W'e'lfave especially seen that the unsigned data type, while conceptu
ally"st:'raightforward, can lead lo behaviots that eyen experienced programmers "do 
not eii:pect. We have also seen tllat thl~ data type can arise in b~expecletl wJys-,-for 
example, when writing integer constants'and when invoking library routines. 

tiillWii~~f.1>E~m2·~mtliiiitM16:1>::tJl~.!!·\t$i!l 
Assume }lata type int is 32 bits long andl!ses a !wo:s-compl~l"~nt representati9,n 
for signed values. Right shifts are performed arithmetically for signed values and 
logically for unsigned values. The variables are declared and initialized as follows: 

int x = foo(); 
inty=bar(); 

unsigned ux = x; 
unsigned uy = Yi 

/* Arbitrary value */ 
/* Arbitrary value */ 

" 

For each of the following C expressians, either (1) argue that it is true'(evalu
ates to 1) for all values of x arid y;Si (2) give values of le and y for which.it is false 
(evaluates to-0):' 

A. (x > 0) 11 (x-1 < O) 

B. (x & 7) != 7 11 (x«29 < 0) 

c. (x * x) >= 0 

D. x<O 11 -x <= o 
E. x>O 11-x>=O 

F. x+y == uy+ux 

G. X*-y + uy*ux == -x 

.-

2.4 Floating Point 
• ~ • j I 

A floating-point representation encodes rational numbers or the form V = x x 2Y. 
Iris useful for performing computations involving very large numbers {IV I » 0), 


