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32 Chapter 2 Representing and Manipulating Information

Modem computers store and process information represented as two-valued
signals. These lowly binary digits, or bits, form the basis of the digital revo-
] lution. The familiar decimal, or base-10, representation has been in use for over
i 1,000 years, having been developed in India, improved by Arab mathematicians in
i the 12th century, and brought to the West in the 13th century by the Italian mathe-
matician Leonardo Pisano (ca. 1170 to ca. 1250), better known as Fibonacct. Using
decimal notation is natural for 10-fingered humans, but binary values work better
when building machines that store and process information. Two-valued signals
can readily be represented, stored, and transmitted—for example, as the presence
or absence of'a hole i & punclied card, 454 high or low voltage on a wire, or as a
magnetic domain oriented clockwise or counterclockwise. The electronic circuitry
' for storingd and performing computations on two-valued signalsjs very simple and
reliable, enabling manufacturers to integrate millions,-or even billions, of such
circuits on a single silicon chip. oy 1

In isolation, a single bit is not very-uséful. When we group'bits together and
apply some interpretation that gives meaning to the different possible bit patterns,
however, we can represent the elements of any finite set. For example, using a
binary number system, we can use groups of bits to encode nonnegative numbers.
By using a standard character code, we can encode the letters and symbols in a
document. We cover both of these encodings in this chapter, as well as encodings
to represent negative numbers and to approximate real numbers.

We consider the three most important representations of numbers. Unsigned
encodings are based on traditional binary notation, representing numbers greater
than or equal to 0. Two’s-complemerit encodings.are the mdst common way to
represent signed integers, that is, numbers that may be either positive or negative.
4 Floating-point encodings are a base-2 version of scientific notation for represent-
ing real numbers. Computers implement arithmetic operations, such as addition
and multiplication, with these different 31|'epresentations, similar to the correspond-
ing operations on integers and real numbers.

Computer repreSentationscuse’a limitedinumber of bits to encode a number,
and hence some operations can overflow when the results are too large to be rep-
resented. This can lead to some surprising results. For example, on most of today’s
computers (those using a 32-bit representation for data type int), computing the
expression

e

X

200 * 300 * 400 * 500

yields —884,901,888. This runs counter to the properties of integer arithmetic—
computing the product of a set of positive numbers has yielded a negative result.
On the other hand, integer computer arithmetic satisfies many of the familiar
properties of true integer arithmetic. For example, multiplication is associative
ﬁ and commutative, so that computing any of the following C expressions yields
i —884,901,888:

(500 * 400) % (300 * 200)
ll ((500 * 400) * 300) = 200
((200 * 500) * 300) * 400
400 % (200 * (300 * 500))

\
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The computer might not generate the expected result, but at least it is con-
sistent!

Floating-point arithmetic has altogether different mathematical properties.

The product of a set of positive numbers will always be positive, although over-
flow will yield the special value +cc. Floating-point arithmetic is not associative
due to the finite precision of the representation. For example, the C expression
(3.14+1e20)-1e20 will evaluate to 0.0 on most machines, while 3.14+(1e20-
1e20) will evaluate to 3.14. The different mathematical properties of integer
versus floating-point arithmetic stem from the difference in how they handle the
finiteness of their representations—integer representations can encode a compar-
atively small range of values, but do so precisely, while floating-point representa-
tions can encode a wide range of values, but only approximately.
- Bystudying the actual number representations, we can understand the ranges
of values that can be represented and the properties of the different arithmetic
operations. This understanding is critical to writing programs that work correctly
over the full range of numeric values and that are portable across differerit combi-
nations of machine, operating system, and compiler. As we will describe, a number
of computer security vulnerabilities have arisen due to some of the subtleties of
computer arithmetic. Whereas in an earlier era program bugs would only incon-
venience people when they happened to be triggered, there are now legions of
hackers who try to exploit any bug they can find to obtain unauthorized access
to other people’s systems. This puts a higher level of obligation on programmers
to understand how their programs work and how they can be made to behave in
undesirable ways.

Computers use several different binary representations to encode numeric
values. You will need to be familiar with-these representations as you progress
into machine-level programming in Chapter 3. We describe these encodings in
this chapter and show you how to reason about.number representations.

We derive several ways to perform arithmetic operations by directly ma-
nipulating the bit-level representations of numbers. Understanding these tech-
niques will be important for understanding the machine-level code-generated by
compilers in their attempt to optimize the performance of arithmetic expression
evaluation.

Qur treatment of this material is based on a core set of mathematical prin-
ciples. We start with the basic definitions of the encodings and then derive such
properties as the range of representable numbers, their bit-level representations,
and the properties of the arithmetic operations, We believe it is important for you
to examine the material from this abstract viewpoint, because programmers need
to have a'clear understanding of how computer arithmetic relates to the more
familiar integer and real arithmetic.

The C++ programming language is built upon C, using the exact same numeric
representations and operations. Everything said in this chapter about C also holds
for C++. The Java.anguage definition, on the other hand, ¢reated a new set of
standards for numeric representations and operations. Whereas the C standards
are designed to allbw a wide range of implementations, the Java standard is quite
specific on the formats and encodings of data. We highlight the representations
and operations supported by Java at several places in the chapter.
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2.1 Information Storage

Rather than accessing individual bits in memory, most computers use blacks of
8 bits, or bytes, as the smallest addressable unit of memory. A- machine-level
program views memory as a very large array of bytes, referred to as virtial
memory. Every byte of memory is identified by a unique number, known as its
address, and-the set of all possible*addresses is known as the virtual address space.
As indicated by its name, this virtual address space is just a‘conceptial image
presented to the machine-level program. The actual implementation (presented
in Chapter 9) uses a combination of dynamic random -access memory (DRAM),
flash memory, disk storage, special hardware, and operating system software to
provide the program with what appears to be a monolithic byte array.

In subsequent chapters,.we will cover how the compiler and run-time system
partitions this memory space into more'manageablewunits:to store the different
program objects, that is, program data, instructions, and control information.
Various mechanisms are used to allgcate and manage the storage for different
parts of the program. This management is all performed within the virtual address
space. For example, the value of a pointer in C—whether it.points toran integer,

a structure, or some other program gbject—is the virtual address of the first byteé

of some block of storage. The C compileT also associates type information with

each pointer, so that it can generate different machine-level code to access the
value stored at the location designated by the pointer dependingion the type of

L that value. Although the' Crcompiler maintains:this type information, the actual .
| machine-level program it generates has no information about data types. It simply
f treats each program object as ablock of bytes and the program itself as a sequence
| j of bytes. ;
T
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Aside The evoiution of the C programming languager

a5

As-was described in an aside on page 4,'the C programming langhage wa'sf first developed by Dennis
Ritchié df Bell Laboratories for,use with the Unix operating system {also developed at'Bell Labs). At
the time, most system programs, such as operating systems, had to be written largely in assembly code
in order tazhave access to the low-Tevel representations.of different data*types: -\For“example it was
not feasible to write a membry allocatoy, such as is provided by,the malloc library function, in other
high-1ével languages of thatera. i

: The original Bell Labs version of C was documented in the first edition of the book by.Brian
, Kernighan and Dennpis thchxe [60] Over time, o hés evolved through the efforts of several standard-
i ization groups. The ﬁrst major revision of the ongmal Bell Labs ¢ led to the AN SI Cstandard in 1989,

by a group workmg under the auspmes of. the Amencan Nauonal Staudards Insntute ANSICwasa
ma] or departure from Bell Lgbs C, especxally‘m the way functions'are declared ANSI C s described.

i the.second, edition of Kernighan and Ritchid's book [61} which'is stlli considered one of the best,

i referepces on C

i The, Internatlonal ,Stagdards Orgamzatlon took over :e5pon515111ty for standard:zmg the C lan-
% Suage, adoptmg a versigh tha; was, sugstannall»y the samg, as ~ANSI C in 1990 and- hence is referred to

as “ISO (390 i

f;[’h;s same orgamzatlon sponsored an updatmg of thq,language in 1999 yielding =180 C99.” Among
other T}imgslthxs vegsion 1n1;roduced somg new data gypes and p;qv1ded supEort for text strings requiring
c]; araeters not fom;d in the Enghsh lapguage A moregeent s s;axld"and was approved in 2011, and hence
;I8 named ¥1SO C11, ; agam addmg more data types and'features. Most of these recent additions have
. -been backward compci?zble mpamﬁg that prograing wyilten accordlng t? the earher standard (at least
as far back-as ISQ C90) will havo the same béhdvior when complled accordmg;o the newer standards.
Tfle,_GNlj Compﬂer CoLlectlo (Gec) can compile progrgxms Aocézdmg to the conveptions of seyeral
d1fferentaveysxons of the ol lgnguagé ba§ex‘;£ on d1ff@rent gommand—hnc opgpns, as shown in Figure 2.1.
For example “to COII]E11§ program prog +C acco;dldg t,o‘TSO C11 we c,guld gx,ve the.command line

.l:l.m%xmgca -’stq:clijprog g e

N

E * &

ﬁfhe bﬁtmns -ansi and -%d—caé have ldeﬁtical effectr——the tods id compiled ﬁ&:ordmg to the ANSI
or ISO (f50 st@ndal:d (C90 is sometlmes referred to as “(389 7 sirice’its standardlzatlon effort began ifi
1989 b} 'I'h@ optmn skd—qﬁ@ causes the compre.r o Toll&y™ the 180 C9Y cofiventidn.

" JAs of the wmtmg of this book; &hen no oPnon is SPEClﬁf:d the f)rogram vaﬁ be complled according
tQ a versuoﬁ B C based on 1SO° C90 it mcludmg soine features* of C99 “some of C11, some of
C++ and others specific to gec..The GNU project, is déveloping a-version that combines 1SO C11,
plus.other features, that cad bq:‘speclﬁed with the command-ling optiop_~stdzgnuii. (Currently, this
vxmplementatxoq s mcomplete’") This will'becorne the-default versiof.

*a

o £
C version e command-line option
GNU 89 none, -std=gnuBy

ANS], ISO C90 -ansi, -std=c89

ISO C99 -~atd=c99

18O C11 -std=cll

Figure 2.1 Specifying different versions of C to Gce,
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! Newto C?' The role of pointers in €. o w 3
| Pointérs dre' a centrdl feature’ of T, 'Ihey“,,p‘rowde the mechanism for reférencirig elements of data j
i structures, including’arrays Just like'a variable; a pointer ‘has two aspects: its value and'its-fype. The . I
value indicates the location ofsome objecty whlledts,typeandlcates whal Kind-of object (e, g Jinteger or | )
floating” b01nt number) is stored at thét location. . a™ 4 !

Truly'understanding pointers reqmres examining their représefitation andamplementatlon at the .
machine level. This will be amajor focusin Chapter 3, culmmatmg inanin-depth presentatlon in Section
3 101" : “
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21.1 Hexadecimal Notation

A single byte consists of 8 bits. In binary notation, its value ranges from 00000000,
to11111111,. When viewed as a decimal integer, its value ranges from 01 t0 255.4.
Neither notation is very convenient for describing bit patterns. Binary notation
is too verbose, while with decimal notation it is tedious to convert to and from
bit patterns. Instead, we write bit patterns as base-16, or hexadecimal numbers.
Hexadeciinal (or simply “hex™) uses digits ‘0’ through ‘9" along with characters
‘A’ through ‘F’ to represent 16 possible values. Figure 2.2 shows the decimal and
biliary values associated with the 16 hexadecimal digits. Written in hexadecimal, '
the value of a single byte can rangé from 0044 to FFy. "
In C, fiumeric constants starting with Ox or 0X are interpreted as being in
hexadecimal. The characters ‘A’ through ‘F’ may be written in either upper- or
lowercase. For example, we could write the number FA1D37B;¢ as 0xFA1D37B, as
0xfald37b, or even fnixing upper- and lowercase (e.g., 0xFalD37b). We will use
the C notation for representing hexadecimal values in this book. A
A common task in working with machine-level programs is to manually con- !
‘, vert between decimal, binary, and hexadecimal representations of bit patterns.
Converting between binary and hexadecimal is straightforward, since it can be
performed one hexadecimal digit at a time. Digits can be converted by referring
to a chart such as that show‘nyin'Fi ure 2.2. One simple trick for doing the conver-
sion in your head is to memorize the decimal equivalents of hex digits A, C, and F.

==

s

i Hex digit 0 1 2 3 4 5 6 7
Decimal value 0 1 2 3 4 5 6 7
Binary value 0000 0001 0010 0011 0100 Ol01 0110 0111
. Hex digit 8 9 A B C D E F
E Decimal value 8 9 10 1 12 13 14 15
[

Binary value 1000 1001 1010 1011 1100 1101 i110 _1:111

Figure 2.2 Hexadecimal notation. Each hex digit encodes one of 16 values.
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The hex values B, D, and E can be translated to decimal by computing their values
relative to the first three.

For example, suppose you are given the number 0x173A4C. You can convert
this to binary format by expanding each hexadecimal digit, as follows:

Hexadectmal 1 7 3 A 4 C
Binary 0001 0111 0011 1010 0100 1100

=~

This gives the binary representation 0001011100111010010011060.

Conversely, given a binary number 111100101011G110110011, you convert it
to hexadecimal by first splitting it into groups of 4 bits each. Note; hoWever, that if
the total number ot bits is not 4 multiple of 4, you'should make the leffmost group
be the one with fewer than 4 bits, effectively padding the iumber with leading
zeros. Then you tfanslate each group of b1ts into tHe corresponding hiexadecimal

digit:
Binary 11 1100 1010 1101 1011 0011
Hexadecimal 3 ¢ A D B 3

Perfonn the followmg number conversions:

A. 0x39A7F8 to binary

B. binary 11001001011'11011 to hexadecimal

C. 0xD5EAC to binary .

D. binary 1001101110011110110101 to hexadecimal

When a value ,Ir‘is a power of 2, that'is, x = 2" for some honnegative integer
#, we can readily writé x in hexadecimal form by remembeéring that the binary
representation of x is simply 1 followed by n zeros. The hexadecimal Uigit O
represents 4 binary zeros. So, for n written in the form i + 4j, where 0 < i <3,
we can write x with a leading hex digit of 1 {i = 0), 2 (i = 1,4 (= 2) or 8
(i =3), followed by j hexadecimal 0s. As an example, for x =2,048 = 21, we
bhave n =11=3 + 4 - 2, giving hexadecimal representation 0x800.

F111 m the bIank entnes in the fo]lowmgtable giving the decimal and hexadecimal
representations of different powers of 2:
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n 2" (decimal) 2" (hexadecimal) o
9 512 0x200
19 R
16,384
0x10000
17 _ ':
S 32
0x80 i

— —
¥

Converting between decimal and hexadecimal rgpresentations requires using
multiplication or division to handie the general case. To convert a decimal num-
ber x to hexadecimal, we can repeatedly divide x by 16, giving a quotient g and a
remainder r, such that x = ¢ <16 . We then use the hexadecimal digit represent-
ing r as the least significant digit-and generate the remaining digits by repeating
the process on g. As an example, consider the conversion of decimal 314,156: '

1314,156 = 19,634 - 16'+ 12 () i
19,634 =1,227-16 +2  (2) * ,
1,227=76-16 + 11 (8)
76=4-16 4 12 ©)
4=0.16+4 @

From this we can read off the hexadecimal representation as 0x4CB2C.

Conversely, to convert a hexadecimal number to decimal, we can multiply
cach of the hexadecimal digits by the appropriate power of 16. For example given
the number 0x7AF, we compute its decimal equivalent as-7 - 162+ 10-16+15=
7-256+10-16 +15 = 1,792~ 160 + 15 =1,967. '

A smgle byte can, be representecl by 2 hexadecnnal dlglts Fill in the missing
entries in the followlng table, giving the decimal, binary, and hexadecimal values

L T T T, D N L VT

of different byte patterns: _ . J
Decimal Binary I‘-IexaécLim’al
0 00000000 000
167 R |
62
188
00110111 — e 4
1000 1000 —

11110011 —— .
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- Tot converting larger valdesbeétween decimal and hexademmal itis besf to i0¢ gomputer or calculitor:

*searéh enguiqs with quﬁr:es ,suclr as W’* el
‘5».- " ‘5' - & © " P
S R Q%hvert*ﬁiabcd 1o 'Eietlfna“l td ) b *fm 34 Mg e
o . . LTI S v Fj&;h%?;ﬁ?‘, # é‘, o i B o 5_
5 - B o & fﬁ,a‘ e ® s
123*‘11@1 he}f I A A k. %
W own o wi " o, "
Wm\w T T U Mf' i 'ﬁ% ) “ v £ %, : i EAN w
Decimal Binary = Hexadecimal
[ [, SV 0xB2
i OxAC
0xE7

W"lthout convertmg the numbers to deCImal or bmary, try to solve the fo]lowmg
arlthmetlc roblems giving | the answers in hexadecimal. Hint: Just modify the
methods you use for perfqrmmg decimal addition and subtraction to use base 16.

A. 0x503¢c+ 0x8 =

B. 0x503c — 0x40 =

C. 0x503c+ 6{4!= — et
D. 0x50ea — 0x503¢c =

2.1.2 Data Sizes

Every computer has a word size, indicating the nominal Size of pointer data, Since
a virtual address is encoded by such a word, the most important system parareter
determined by the word size is the maximumm size of the virtual address space. That
is, for a machine with a w-bit word size, the virtual addresses can range from 0 to
2% — 1, giving the program access to at most 2" bytes..

In recent.years, there has been a widespread shift from machines with 32-
bit word sizes to those with word sizes of 64 bits. This occurred first for high-end
machines designed for large-scale scientific and database applications, followed
by desktop and laptop machines, and most recently for the processors found in
smartphones. A 32-bit word size limits the virtual address space to 4 gigabytes
(writtén 4 GB), that is, just over 4 x*10° bytes. Scaling up to a 64:bit word size
leads to a*virtual address space of 16 exabytes, 6rarourid 1.84 x 1017 bytes.

do the wérkm Thereare nUmeroys | tools,that can da this. One s:mple way is to use any of the standard ¢

R S Y
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Most 64-bit machines can also run programs compiled for use on 32-bit ma-
; chines, a form of backward compatibility. So, for example; Whena programprog.c
is compiled with the directive

L. T P VO T T

o ke

g

linux> gcc —m32 prog.c

S S

v then this program will run correctly on either a 32-bit or a 64-bit machine. On the ;
other hand, a program compiled with the directive ]

linux> gecec -m6é4 prog.c

il

will only run on a 64-bit machine. We will therefore refer to programs as being
either “32-bit programs” or “64-bit programs,” since the distinction lies in how a ]
| program is compiled, rather than the type of machine on which it runs. .
| Computers and compilers support multiple data formats using different ways 4
4
L.

f to encode data, such as integers and floating point, as well as different lengths.
For example, many machines have instructions for manipulating single bytes, as
‘ well as integers represented as 2-, 4-, and 8-byte quantities. They also support

: floating-point numbers represented as 4- and 8-byte quantities.
The C language supports multiple data formats for both integer and floating-
point data. Figure 2.3 shows the number of bytes typically allocated for different C
i data types {We discuss the relation between what is guaranteed by the Cstandard
! versus what is typical in Section'2.2. ) The exaét numbers of bites for some daia
types depends on how the program is cémpiled. ‘We show sizes for typical 32-bit
and 64-bit programs. Intéger data can be either sighed, able to represent negative;
| zero, and positive values, or unsigned, only allowing nonnegative values. Data
type char represents a single byte. Although the name char derives from the fact
that it is used to store a single character in a tekt string, it can also be used to store
integer values. Data types short, int, and long are intended-to provide a range of

C declaration Bytes

! Signed Unsigned 32-bit  64-bit

! [eigned] char  unsigned char A 1

i short Jnsigned short 2 2
int unsigned 4 4
long unsigned long 4 8

i int32_% uint32_t 4 4

i int64_t uint64_t 8 8
char’* 4 8.
float 4 4 T

: double 8 8

L]
4

' Figure 2.3 Typical sizes (in bytes) of basic C-data types. The number of bytes allocated
varies with-how the program is compiled. This chart shows the values typical of 32-bit,
and 64-bit programs.
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New to C? Declaring pointers . . .
For any data type T, the declaration S . &
- . kg # « i .,
Y .. Dtk

indicates that p is a pointer variable, pointing to an object of type T. For example,
A 0 ## t & “ - #
chat *p}, : o :
& ) £ s‘.’l-

is the declaration of 4 pointer,to'an object of type char.

L Y it

sizes. Even when compiled for 64-bit systems, data type int is usually just 4 bytes,
Data type long commonly has 4 bytes in 32-bit programs and 8 bytes in 64-bit
prograrms. ,

To avoid the vagaries of relying on “typical” sizes and different compiler set-
tings, ISO C99 introduced a class of data types where the data sizes are fixed
regardless of compiler and machine settings. Among these are data types int32_t
and int64_t, having exactly 4 and 8 bytes, respectively. Using fixed-size integer
types is the best way for programmers to have close control over data represen-
tations.

Most of the data types encode signed values, unless prefixed by the keyword
unsigned or using the specific unsigned declaration for fixed-size data types. The
exception to this is data type char. Although most compilers and machines treat
these as signed data, the Cstandard does not guarantee this. Instead, as indicated
by the square brackets, the programmer should use the declaration signed char
to guarantee a 1:byte signed value. In many contexts, however, the program’s
behavior is insensitive to whether data type char is signed or unsigned.

The Clanguage allows a variety of ways, to order the keywords and to include
or omit optional keywords. As examples; all-of the following declarations have
identical meaning:

unsigned long
unsigned long int
long unsigned
long unsigned int

We will consistently use the forms found in Figure 2.3,

Figure 2.3 also shows that a pointer (e.g., a variable declared as being of
type char #) uses the full word size of the program. Most machines also support
two different floating-point formats: single precision, declared in C as float,
and double precision, declared in C as double, These formats use 4 and 8 bytes,
respectively.

Programmers should strive to make their programs portable actoss different
madchines and compilers. One aspect of portability is to make the.program insensi-
tive to the exact sizes of the different data types. The Cstandards set lower bounds

-3
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on the numeric ranges of the different data types, as will be covered later, but there j
are no upper bounds (except with the fixed-size types). With 32-bit machines and ’l
32-bit programs being the dominant combination from around 1980 until around 3
2010, many programs have been written assuming the allocations listed for 32- %
bit programs in Figure 2.3. With the transition to 64-bit machines, many hidden h
word size dependencies have arisen as bugs in migrating these programs to new .
machines. For example, many programmers historically assumed that an object ,
declared as type int could be used to store a pointer. This works fine for most
32-bit programs, but it leads to problems for 64-bit programs. |

2.1.3 Addressing“and Byte Ordering

For program objetts that span multiple bytes, we must establish two conventions:
what the address of the object will be, and how we will order the bytes in memory. "
In virtually all machines, a multi-byte object is stored as a contiguous sequence
of bytes, with the address of the object given by the smallest address of the bytes
used. For example,suppose a variable x of type int has address 0x100; that is, the
value of the addréss expression &x is 0x100. Then (assuming data type int has a
32-bit representation) the'4 bytes of x would be stored in memory Iocations 0x100,
0x101, 0%102, and 0x103. !

For ordering the bytes representing an object, there are two common conven- %
tions. Consider a w-bit integer having a bit representation [x,,_1, Xy—2, - - - » X1,%0);
where x,,_y is the most significant bit and x, is the least. Assuming w is a multiple
of 8, these bits can be grouped as bytes, with the most significant byte having bits
(X415 Xu—2s - - - » Xyp_g), the least sighificant byte having bits [x7, xe, . . . , X}, and
the other bytes having bits from the middle. Some machines choose to store the ob-
ject in memory ordered from least significant byte to most, while other machines
store them from most tb least. The former convention—where the least significant
byte comes first—is'referred to as little’endian. The latter convention—where the
most significant byte comes first—is referred'to as big endian.

Suppose the variable x of type int and at address 0x100 has a hexadecimal
value of 0x01234567. The ordering of the bytes within the address range 0x100
through 0x103 depends on the type of machine:

Big endian

0x100 0x101 0ox102 0x103

Little endian

Note that in the word 0x01234567 the high-order byte has hexadecimal value
0x01,.while thelow-order byte has value 0x67.

Most Intel-compatible machines operate exclusively in little-endian mode. On
the other hand, most machinesfrom IBM and Oracle (arising from their acquisi-
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Aside  Origin of “endian”

*

" Here is iow Jonathan Swift, writing in 1726, described the history of the controversy between big and

4 little endiahs: . \z
v f -

. .. Lilliput and Blefuscu . . . have, as I was going to tell you, been engaged in 2 most obstinate war
*« for six*and-thirty inoons.past. It began upon the following occasion. It is allowed on all hands, that
the primitive way of breaking eggs, before we eat them, was upon the larger end; but his present
majesty’s grandfather, while he was a boy, going to eat an egg, and breaking.it according to the
reancient practice, happened to-cut one of his fingers. Whereupon the empéror his father priblished
an edict, commanding all his subjects, upon great penalties, to break the smaller end of their eggs.
The people so highly resented this law, that our histories tell us, there Have been six rebellions raised
f «+ onthat account; wherein one emperor lost his life, and another his crown. These civil commotions
§ were constantly fomented by the monarchs of Blefuscu; and when they were, quelled, the exiles
always fled for refuge to that empire. It is computed that eleven thousand persons have at several
times suffered death, rather than submit to break their eggs at the smaller end. Many hundred
Jarge volumes have been.piiblished upon this controversy: but the books of thé Big-endians have
been long férbidden, and the whole party rendered incapable by law of holding employments.
{(Jonathan Swift. Gulliver’s Travels, Benjamin Motte1726:) =

-

- .

In his day, Swift was satirizing the continued conflicts between Englapd (Lilliput) and France (Blefuscu).
Danny Cohen, an early pionger in networking protocéls, first applied, these terms to refer to byte
ordering [24)], and the terminology has been widely adopted.
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tion of Sun Microsystems in 2010) operate in big-endian mode. Note that we said
“most.” The conventions do not split precisely along corporate boundaries. For
example, both IBM and Oracle manufacture machines that use Intel-compatible
processors and hence are little endian. Many recent microprocessor chips are
bi-endian, meaning that they can be configured to operate as either little- or
big-endian machines. In practice, however, byte ordering becomes fixed once a
particular operating system is chosen. For example, ARM microprocessors, used
in many cell phones, have hardware that can operate in either little- or big-endian
mede, but the two most common operating systems for these chips—Android
(from Google) and IOS (from Apple)—operate only in little-endian mode.
People get surprisingly emotional about which byte ordering is the proper cne.
In fact, the terms “little endian” and “big endian” come from the book Gulliver’s
Travels by Jonathan Swift, where two warring factions could not agree as to how a
soft-boiled egg should be opened—Dby the little end or by the big. Just like the egg
issue, there is no technological reason to choose one byte ordering convention over
the other, and hence the arguments degenerate into bickering about sociopolitical
issues. As long as one of the conventions is selected and adhered to consistently, .
the choice is arbitrary. i
For most application programmers, the byte orderings used by their machines
are totally invisible; programs compiled for either class of machine give identi-
cal results. At times, however, byte ordering becomes an issue. The first is when
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binary data are communicated over a network between different machines. A
common problem is for. data produced by a little-endian machine to be sent to
a big-endian machine, or vice versa, leading to the bytes within the words being
in reverse order for the receiving program. To avoid such problems, code written
for networking applications must follow established conventions for byte order-
ing to make sure the sending machine converts its internal fepresentation to the
network standard, while the receiving machine converts the network standard'to
its internal representation. We will see examples of these conversions in Chap-
ter 11. u

A second case wheré byte ordering becomes importantis when looking at
the byte sequences representing integer data. This.occurs often when inspecting
machine-level programs. As an example, the following line occurs in a file that
gives a text representation of the machine-level code for an Intel x86-64 processor:

400443: 01 05 43 0b 20 CO add Yeax, 0x200b43 (4rip)

This line was generated by a disassembler, a tool that.determines the instruction
sequence represented by an executable program file. We will learn more about
disassemblers and how to interpret lines such as this in Chapter 3..For now, we
simply note that this line states that the hexadecimal byte sequence 01 05 43 0b
20 00 is the byte-level representation of an instruction that adds a word of data
to the value stored at an address computed by adding 0x200b43 to the turrent
value of the program counter, the address of the next instruction to be executed.
If we take the final 4 bytes of the sequence 43 0Ob 20 00 and write them in reverse
order, we have 00 20 0b 43. Dropping the leading 0, we have the value 0x200b43,
the numeric value written. on the right. Having. bytes appear- in reverse order
is a common occurrence when reading machine-level program representations
generated for little-endian machines such as this one. The natural way to.write a
byte sequence is to have the lowest-numbered byte on the left and the highest on
the right, but this is contrary to the normal way of writing numbers with the most
significant digit on the left and the least on the right. i

A third case where byte ordering becomes -visible is when' programs are
written that circumvent the normal type system. In the C language, this:can.be
done using a cast or a union to allow an object to be referenced according to
a different-data type frdm which it was created. Such-toding tricks are strongly
discouraged for most application programming, but they can be quite Useful and
ever necessary forsystem-level programming,

Figure 2.4 shows C code-that uses casting to access and print the byte rep-
resentations of different program objects. We use typedef.to define data type
byte_pointer asa pointer to an object of type unsigned char. Such a byte pointer
references a sequence of bytes where each byte is considered to be a nonnega-
tive integer. The first routine show.bytes is given the address of a sequence of
bytes, indicated by a byte pointer, and a byte count. The byte count is spectfied as
having data type size_t, the preferred data type for expressing the sizes of data
structures. It prints the individual bytes in hexadecimal. The C formatting direc-
tive %.2x indicates that an integer should be printed in hexadecimal with at least

2 digits.

T T
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1 #include <stdio.h>

2

3  typedef unsigned char *byte_pointer;

4

5 void show_bytes(byte_pointer start, size_t lemn) {
6 int i;

7 for (1 = 0; i < len; i++)

8 printf(" %.2x", start[i]);

9 printf("\n");

10}

11

12 void show_int(int .x)}, {

13 show_bytes{({byte_pointer) &x, sizeof(int));
4}

15

16  void show_float(float x) { ,

17 show_bytes((byte_pointer) &x, sizeof(float));
13}

19 -

20  void show_pointer(void #x) {

21 show_bytes((byte_pointel) &x, sizeof(void *));
22}

Figure 2.4 Code to print the byte representation of program objects. This code
uses casting to circumvent the type system. Similar functions are easily defined for other
data types.

Procedures show_int, show_float, and show_pointer denionstrate how to
use procedure show_bytes to print the byte representations of Cprogram objedts
of type int, float, and void *jrespectively. Observesthat they simply pass shéw_
bytes a pointer &x to their argument x, casting the ointer to be of type unsigned
char *. This cast indicates to the €ompiler that tﬁ‘uﬁﬁrbgram shofild consider the
pointer to be to a’sequence of bytes ratheT than to an object of‘the original data
type. This pointer will then be to the lowest byte address occupied by the object.

These procedures use the C sizeof operator tq defermine the number of bytes
used by the object. In general, the expression sizeof (T) returns the number of
bytes required to store an object of type I, Using sizeof rather than a fixed value
is one step toward writing code that is_p_grfable acrgss different machine types.

We rap the cqde shown, in Figure 2.5 op,seyeral different machines, giving the
results shown in.Figure 2.6. The following maghines were used:

Linux 32 , Intel IA‘J(Z’processor {lurmih"gf Lilnux.

Windows  Intel IA32 processor tunning Windows. v

Sun Sun Microsystems SPARC processor running Solaris, (These machines
are now produced by Oracle.)

Linux 64 Intel xB6-64 processor running Linux.

45




|

s e -
f
E 46 Chapter 2 Representing and Manipulating Information
code/data/show-bytes.c
{ void test_show_bytes(int val) {
I int ival = val;

1

2

3 float fval = (float) ival;
4 int *pval = &ival;

5 show_int (ival);

6 show_float{fval);

7 show_pointer(pval);

8

-

code/data/show-bytes.c

Figure 2.5 Byte representation examples. This code prints the'byte representations

of sample data objects.
1

Machine Value Type Bytés (hex)
Linux 32 12,345 int 39 30 00 00
Windows 12,345 int 39 30 0000
Sun 12,345 ant 00 00 30 39
Linux 64 12,345 int 39 30 00 00
Linux 32 12,345.0 float 00 e4 40 46
Windows 423450, float 00 e4-40 46 n
Sun 12,345.00 float 46 40 e4 00
Linux 64 12.,345.0 float 00 ed 40 46
Linux 32 &ival int * 4 f9 £f bf
Windows kival int *  ,bdcc 2200
Sun &ival int.x ef £f fa Oc
Ligux 64 Zival int#., ‘b8 11 eb ff £f 71 00 00

Figure 2.6 Byte representatiois of different data values. Results for int and float
are identical, except for byte ordering. Pointer values are machine dqpendent.

1

Our argument 12;345 has hexadecimal representation 0x00003039. For the int
data, we get identical results for all machines, except for the byte ordering. In
particular, w&'can see that the least significant byte value of 0x39 is-printed first
for Linux 32, Windows, and Linux 64, indicating little-endian machines, and last
for Sun, indicating a big-endian machine. Similarly, the bytes of the float data
are identical, except for the byte értlering. On the other hand, thé pointer values
are completely different. The different machine/operating system configurations
use different conventions for storage allocation. One feature to note is that the
Linux 32, Windows, and Sun mAchines use 4-byte addresses, while the Linux 64
machine uses 8-byte addresses. /
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New to C? Naming data types ‘with typedef

The typedef declaration in C provides a way of giving a name to a data type. This can be a great help
in improving code readability, since deeply nested type declarations can be difficult to decipher,,

The syntax for typedef is exactly like that of declaring a variable, except that it uses a type name
rather than a variable name. Thus, the declaration of byte_pointer in Figure 2.4 has the samg form as
the declaration of a variable.of type unsigned char; *.

For example, the declaration

M A R O ISR

ST R

typedef int *int_pointer;
¢ int_pointer ip;

¢ definestype int_pointer to be a pointer to an int, and declares a variable ip of this type. Alternatively,
{ we could declare this variable directly as

§ int *ip; s - ]
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New to C? Formiatted printing with printf ;

The prmtf "function (along with its cousns £ printf and sprintt) provides a way to print information
with considerable control:over the formattmg details. The first argument is a format string, while any
remaining arguments are values to bé pnnted Within the format string, each character sequence
starting with ‘%’ indicates how to format the next argument. Typical examples include %d to print a
decxmal integer, %f to print a floating-point number, and ¥%c to print a character having the character

' code given by the atgument.
Specifying the formatting of fixed-size data types, such as int_32t, is a*bit more involved, a$ i}
described i the aside on page 67.

W e et e R celre W T e R a w el
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Observe that although the floating-point and the integer data both encode
the numeric value 12,345, they have very different byte patterns: 0x00003039
for the integer and 0x4640E400 for floating point. In general, these two formats
use different encoding schemes. If we expand these hexadecimal patierns into
binary form and shift them appropriately, we find a sequence of 13 matching bits,
indicated by a sequence of asterisks, as follows:

¢ ¢ ¢ 0 3 0 3 9

¢0000000000000000011000000111001
s ok ok o ok ok ok ko

4 6 4 0 E 4 o0 0
01000110010000001110010000000000

This is not coincidental. We will return to this example when we study floating-
point formats.




B R o e ie——y e — e m—— = m o —— - e m om m o =T [ey—
P —— ———— ., © == = = .

| 48 Chapter 2 Representing and Manipulating Information

New to C" Pointers.and arrays N wt L e e W 7
In function"shétr.bytes (Figure.2:4), we see-thé close’corinégtion 'betweeg point”érs ahdparr"aysf' as‘wfll
be discussed in detail in Section3.8. Weisée that«this functionrhas an argument ‘start oftype‘byte_
. pointex (whiéh' haé been ‘defined to be.4 130mfento~unsj§ne‘d? char), “hut’we sde the array reference °
sta“r‘tgﬂ “on ling 8. Ity C,'we'tan' depeference d pomterbwlth array-notation, and we¢ard reference’ array
elements with pointer notation. In this examp;ef the reference start [i] mdwates that'we want to read }

theb te that ised osmons be ond the 1ocat10n omted to by sStart, J«* - ”as,TA; % & K
: y P Y P )l a:; P i
- " 9 S . it ihamince " P .
e R WG W Y e «..w e gy b L g,mrnmw?m w0 ?:rp,,ﬂ wmﬁm kel i el - I e
Néw to €' 'Poini er creatton and’ de’referenémg - % . : T

£

I lines 13, 17, and 21 of Flgure 2.4 we see-uses-of two operations. thatﬂglve C (and therefore C++) its+1

, distinctive character. The.C “address of” operator ‘&’ creates a Pomter *@n all three [ine$, the expression
&x creates a pointer {o,the location holdmg the object mdlcated by varlable x. The type’ *61 this.pointes’
depends on the type of x,7and hence these three pomters are“’*of“type int *, float *, and void:#¥, |
respectlvely (Data type Void *isa spemal kind of pointer with no assaciated type information.) *E
The cast operator converts from, one data, typé to: ‘afiothe. This,-thé da“st (Byté_pointelr) &x I
indicates that whatever type the. %omtér &x hag beforg, the, program a; ill nov, reference a pointer to,
data Qf type nnsigned Cha.'l:i The casts shown here dq, nof chan ge :the actua] pointer; they 51mp]y du'ect

24 the compiler, to Jefer to the data ‘being-pointed to according'to the new, gat&type

o AT o e C——

i
e B iy ey PSR WS, SrR RS o FOERS O A R o e et R SRERED A b o G i j
@ aa; sy A % TR mx i L ] L N M AR wh gVAERER ) Sy et gy ¥ g e 2 5 2
» Aslde Generating an ASCILtable W, @ wuf o F
1
{ You can display a table showing the ASCIFcharacter code by executmg the command fan ascn
* o i, P E R A TR el o o ik :--.16zgs 5 une o e e
k

=

Con51der the followmg three calls to show bytes

int val & OxB7654321;

byte_pointer valp = (byte_pointei) &val;
E show_bytes(valp, 1); /* A. */
show_bytes(valp, 2); /* B. */
show_bytes(valp, 3); /* C. */

o

Indicate the values that will be printed by each call on a little-endian machine
and on a big-endian machine:

A. Little endian:
B. Little endian: ________ Big endian:

Big endian: -

C. Littleendian: _______ Big endian: __

e o
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[}
Using show_int and show_iloat, we determine that the integer 3510593 has hexa-
decimal representation 0x00359141, while the floating-point number 3510593.0

has hexadecimal representation 0x4A564504.

A. Write the binary representations of these two hexadecimal values.

B. Shift these two strings relative to one another. to maximize the number of
matching bits. How many bits match?

C. What parts of the strings do not match?

2.1.4 Representing Strings

A string in € is encoded by an array of characters terminated by the null (having
value 0} character. Each character is represented by some standard encoding, with
the most common being the ASCII character code. Thus, if we run our routine
show_bytes with arguments "12345" and 6 (to include the terminating character),
we get the result 31 32 33 34 35 00, Observe that the ASCII code for decimal digit

x happens to be 0x3x, and that the terminating byte has the hex representation
0z00. This same result would be obtained on any system using ASCII as its* !
character code, independent of the byte ordering and word size conventions. As

a consequence, text data are more platform independent than binary data.

yooee o , B RO e v et pir:
:i'n. : Koy ha

What would be printed as a result of the following call to show_bytes?
const char *s = "abcdef",
show_bytes ((byte_pointer) s, strlen{s));

>
3

Note that letters ‘a”'through ‘2’ have ASCII codes 0x61 through 0x74.

i

2.1.5 Representing Code
Consider the following C function:

1 int sum(int x, int y) {
2 returli x + y;

3}

When compiled on our sample machines, we generate machine code having
the following byte representations:

£

Linuox 32 55 89 e5 8b 45 Oc 03 45 08 c9 ¢3

Windows 56 89 e5 8b 45 Oc 03 45 08 5d c3

Sun 81 c3 €0 (8 90 02 90 09

Linux 64 55 48 89 5 89 7d fc 89 75 £8 03 45 fc c9 c3

49
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Asidé The Unitode standard fortext encocfm L
m w %’Eﬁf“ d i “ $ ”mi&&‘ -

k4
.*The ASCII character.set is’ suitable:for encoding’ En§l1sh Jggguage adogxumﬁnts,\lgutslt does not have, é
, much’in thé.way &f spécial chiaracters, such ‘as-the °French fehealtdg , wholly Amsuited: for encodmg f
. documents in languages such as Greek Russmn,-and Chlnese Over fhe years,“{i vanety of methods
' have been developed to encodé tekt Tor, dlffétqgiﬂanguages Th | Uniﬁgdeﬁonsoru?ﬁn has davxsed the
most comprehensive’and wittely: ‘acce ];cdystandard forwencodmg text. ﬂ'he CurrentaUmcode staridard 3
(ver51on 7.0) has a repertoire-of over 100,000 chiratters sup“portmga wideragé-of langihges, ‘inclnding, £
, theancient languages of Egypt and Babylon,, Tojhelr cﬁ;edlt tha Unicode geglyncal Cpgyn%tg? rejected
" a proposal to includea, standard writing for, Kilngon a”‘ﬁctlohal cmhzatmn from thetelevision seris
% Star Trek: “

The base encoding, known as-the “Umvergal"CHaracter Set”“‘of Ungg;bde yées d 32-bit re;presenta- 2
tion of cha:facters "This wduld seem to require every strmg*‘of text to consist of 4' bytes gper character :
However, alternative codmgs Aare posélble Mhel‘e common characfrs.require.justl gk 2. bytes, while
less common ones reqmre.,more In*pémlculaﬁ the; U’I‘E‘”S“i‘epfé%erltatlon entodes each charactet ag a
sequence of bytes, such that thestandard ASCII c];aracters {use the samé single-hyté encodings as they ;
have i i ASCI], 1mplymg thatall ASCI] byte scquences havethe samé méaning in'UTF’8 as:;they'do ift-

” W o AR S
F L iy S %

?m:.e s

£

Asci g - . v en o LV g
i The Java programmlng language’ uses Umcode il its repres.entauous of.strings. Program librarfes |
are alsé avaxlable for C to support Umcode . wew A npt . ;
) . e st 4 B B PR T AW S5 S it 54 ]

Here we find that the instruction codings are different. Different machine types
use different and incompatible instructions and encodings. Even identical proces-
sors running different operating systems have differences in their coding conven-
tions and hence are not binary compatible. Binary code is seldom portable across
different combinations of machine and operating system.

A fundamental concept of computer systems is that a program, from the
perspective of the machine, is simpl{'a sequence of bytes. The machine has no
information about the original source program, except perhaps some auxiliary
tables maintained to aid in debugging. We will see this more clearly when we study
machine-level programming in Chapter 3.

2.1.6 Introduction to Boolean Algebra

Since binary values are at the core of how computers encode, store, and manipu-
late information, a rich body of mathematical knowledge has evolved around the
study of the values 0 and 1. This started with the work of George Boole (1815
1864) around 1850 and thus is known as Boolean algebra. Boole observed that by
encoding logic values TRUE and FALSE as binary values 1 and 0, he could formulate
an algebra that captures the basic principles of logical reasoning,

The simplest Boolean algebra is defined over the two-element set {0, 1},
Figure 2.7 defines several operations in tHis algebra. Our symbols for representing
these operations are chosen to match those ‘used by the C bit-level operations,
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- & 01 | 01 - 01
0 1 0 00 0 01 0 01
1 0 1 01 1 11 1 10

Figure 2.7 Operations of Boolean algebra. Binary values 1 and 0 encode logic values
TRUE and FALSE, while operations ~, &, |, and ~ encode logical operations NOT, AND, OR,
and EXCLUSIVE-OR, respectively.

as will be discussed later. The Boolean operation ~ corresponds to the lo'gical
operation NoT, denoted by the symbol —. That is, we say that —P is true when
P is not true, and vice versa. Correspondingly, ~p equals 1 when p equals 0, and’
vice versa. Boolean operation & corresponds to the logical operation AND, denoted
by the symbol A. We say that P A @ holds when both P is true and Q is true.
Correspondingly, p & g equals 1 only when p =1 and ¢ = 1. Boolean operation
| corresponds to the logical operation or, denoted by the symbol v, We say that
P v Q holds when either P is true or Q is true. Correspondingly, p | g equals
1 when either p =1 or g = 1. Boolean operation ~ corresponds to the logical
operation EXCLUSIVE-OR, denoted by the symbol @. We say that P @ @ holds when
either P is true or @ is true, but not both. Correspondingly, p ~ ¢ equals 1 when
either p=1landq=0,0r p=0andg =1

Claude Shannon (1916-2001), who later founded the field of information
theory, first made the connection between Boolean algebra and digital logic. In
his 1937 master’s thesis, he showed that Boolean algebra could be applied to the
design and analysis of networks of electromechanical relays. Although computer
technology has advanced considerably since, Boolean algebra still plays a central
role in the design and analysis of digital systems.

We can extend the four Boolean operations to also operate on bit vectors,
strings of zeros and ones of some fixed length w. We define the operations over bit
vectors according to their applications to the matching elements of the arguments.
Let a and & denote the bit vectors [a,,_y, ay_3, . .., ag) and [by_1, B3, . . ., bp),
respectively. We define a & b to also be a bit vector of length w, where the ith
element equals a; & b;, for 0 <i < w. The operations |, =, and ~ are extended to
bit vectors in a similar fashion.

As examples, consider the case where w = 4, and with arguments a = [0110]
and b =[1100). Then the four operationsa & b,a | b, & ~ b, and ~b yield

0110 0110 0110
& 1100 I 1100 = 1100 ~ 1100
0100 1110 1010 0011

) ) : i il o
Fill in the following table showing the results of evaluating Boolean operations on
bit vectors.
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|

; inverse —x, such that x +- r—Ex =0. A similar property hcﬂds f‘on Boolean rmgs wheére ~is the * gddmon

seRa

ity - “ i

Web Aside DATA:BOOL: More'an Boolean algebra and Boolean rings

The Boolean operations |, & and ~ operating on, bit véctots of length w form asBoolein algebra,
for any integer w > (. The simplest rs;the case where w =1 and there are l}xst two elements,‘ byt for
the miore general case there are 2¥ bit vectors of length w. Bodléah alge?sra has” many of the same %
propérfies as-arithmetic over mtegers “For, éxample, just as multiplication distfibutes over, addition,
writtena - (b+c¢)=(a" ) + (a ¥¢), Boolean’bperauon& distributes over |, written a &b ! c)‘ a& b)Y
(a & c}. In addition, however. Boolean operation | distributes over & andsowecan writea | (b&o) =
(a | b) & (a | ¢), whereas we canpot say that a.+ (b - ¢) ='(a +b),- (a + ¢) holds for all mtegers }
When we coﬂs;der Operationg -, &, and * operatmg on’bit vectors of lengthww we get a different’ :
mathematical form, knowy as a Boolean rmg Boolean nngs have many pi'of)ertles in Ebmon wrthsi
integer arithmetic, For example ane, pfoperty of integer 2 arithmefici is that ev,ery value X “hds an add;rrve ;

»

operation, “but in this case eac“h elementgls its gwn addmve, Ipverse. That is, @ ~ a = 0 for any valile a,
where we use Q.here to represenf a bit Vector of all,,zeros We ¢ah’seé this holds fo}*smgle bits, since
0~0=1"1=0, and it'exténds to bit ¥éctors as Well This property holds'even 'when sve rearrange terms
and combine them in & d1fferent order and'so (@a~b)~a=bh. Thiis property leads to somefmterestmg
results and clever trrcks as we will éxpldm in Problem 2, 10

I

e = P e v} ::m- B e e Mt it A mﬁmmi
Operation Result

a [01101001]
b [01010101)
~a
~b _

akh

alb

a~b

One useful application of bit vectors is to represent finite sets. We can encode
anysubset A € {0, 1, ..., w — 1} with a bit vector [ay_1, - . . , 41, ag), where a; = 1if
and only iff € A. For example recalling that we write a,,_; on the left and g, on'the
right, bit vector a = [01101001) encodes the set A = {0, 3, 5, 6}, while bit vector b =
[01010101] encodes the set B = {0, 2, 4, 6}. With this way of encoding sets, Boolean
operations | and & correspond to sct union and intersection, respectively, and ~
corresponds to set complement. Continuing our earlier example, the operation
a & b yields bit vector {(01000001], while A N B = {0, 6).

We will see the encoding of sets by bit vectors in a number of practical
applications. For example, in Chapter 8, we will see that there are a number of
different signals that can interrupt the execution of a program.:We can selectively
enable or disable different signals by specifying a bit-vector mask, where a 1 il
bit position ¢ indicates that signal / is enabled and a 0 indicates that it is disabled.
Thus, the mask represents the set of enabled signals.
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Computers geperate color picfures on a video screen or liquigd crystal display
by mixing three different colors of light; red, green, and blue. Imagine a simple

scheme, with threg differeqt lights, each of which can be tyrned on or off, project-
ing onto a glass screen:

Light sources Glass screen

Red

QObserver

Green

ad

We canthen create cight different colors based on the absence (0) onpresence
(1) of light sources R, G, and B:

B Color

Black
Blue
Green

0
1
0
1 Cyan
0
1
0
1

Red
Magenta
Yellow
White

Fl

i = N R e N R
e i B e B e S e B

3
Each of these colors can be represented ab a bit vector of length 3, andiwe can

apply Boolean.operations:to.them.

A. The co[mpiement of a color is formed by turning off the lights that are gn;and
turning on the lights that are off. What would be the complement of each of
the eight colors listed above?

Describe the effect of applying Boolean operations on the following colors:

Blue | Green =
Yellow & Cyan
Red ~ Magenta

|

53
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2.1.7 Bit-Level Operations in C )

One useful feature of C is that it supports bitwisc Boolean operations. In fact, the
symbols we have used for the Boolean operations are exactly those used by C:
| for ok, & for AND, ~ for Nort, and ~ for EXCLUSIVE-OR. These can be applied to
any “integral” data type, including all of those listed in Figure 2.3. Here are some :
examples of expression evaluation for data type char: ;

C expression  Binary expression Binary result ~ Hexadecimal result :
; ~0x41 ~[0100 0001] [10111110] 0xBE .
Hf ~0x00 ~[0000 0000] [11111111] OxFF ]
E 0x69 & 0x55 [0110 1001] & [0101 0101] [0100 0001] Ox41 ,
E* 0x69 | 0x55 [0110 1001] | [01010101] [01111101] 0x7D

As our examples show, the best way to determine the effect of a bit-level ex- :
pression is to expand the hexadecimal arguments to their binary representations, :
perform the operations in binary, and then convert back to hexadecimal. 3

: As an application of the propeity tHat i~ a = 0 for any bit vector a, consider the
following program. )

1 void inmplace_swap(int *x, int *y) {
2 *y = #x ~ *y; /% Step 1 */ .
3 *x = ¥x = *y; /% Step 2 ¥/
4
5

*y = #x ~ *y; /% Step 3 */
}

As the name implies, we claim that the effect of this procedure is to swap
f the values stored at the locations denoted by pointer variables x and y. Note
that unlike the usual technique for swapping two values, we do not need a third
loeation to temporarily store one value while we are moving the other. There is
v no performance advantage to this way of swapping; it is merely an intellectual
' amusement.
i Starting with values a and b in the locations pointed to by x and y, respectively,
i fill in the table that follows, giving the values stored at the two locations after each
step of the procedure. Use the properties of ~ to show that the desired effect is
athieved. Recall that every element is i;:s own additive inverse (thatis,a ~ a =0).

H Step *X *y s
‘ L Initially a " b
g Step 1
1 1 Step 2

Step 3
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Armed thh the functxon :anlace swap from Problem 2. 10 you decnde to write
code that will reverse the elements of an array by swapping elements from opposite
ends of the array, working toward the middle.

You arrive at the following function:

void .reverse_array(int a[], -int ¢ap) {
int first, last;
for (first = 0, last.= cnt-1;
first <= last;
St first++,last-—)
inplace_swap(&al[first], &allastl};

.
AW N =

-8

7 }

‘When you apply your function to an array containing elements 1, 2, 3, and 4,
you find the array now has, as ex ected, elements 4, 3 °2, and 1. When you try it
on an array with elements 1,2,3,4, and 5 'however, you are surpnsed o see that
the array now has eleménts 5 4,0.2, and 1. In fact, you discover th the code
always works correctly on arrays of even length but it sets the middle element to
0 whenever the array has odd length.

A. For an array of odd length cnt = 2k + 1, what are the values of variables
first and last in the final iteration of function reverse_array?

B. Why does this call to function inplace_swap set the array element to (?

C. What simple modificatidn to the codé for reverse_array would'eliminate
this problem?

One common use of bit-level operations is to implement masking operations,
where a mask is a bit pattern that indicates a selected set of bits within 2 word. As
an example, the mask 0xFF (having ones for the least-51gmﬁcant 8 bits) indicates
the low-order byte of a word. The bit-level operation: x & OxFF yields a value
consisting of the least significant byte of x, but with all other bytes set t6*). For
example, with x = 0x89ABCDEF, the expression would yield 0x000000EF. The
expression ~0 will yield a mask of all ones, regardless of the size of the data
representation. The same mask can be written OxFFFFFFFF when data type int is
32 bits, but it would not be as portable.

erte C expressions, in terms of varlable x, for the following values. Your code
should work for any word' §ize w > 8. Forreference, we show the result of evalu-
ating the expressions for x = 0x87654321, with w = 32,

A. The least significant byte of x, with all other bits set to 0. [0x00000021]

B. Allbut the least significant byteof x complemented, with the least significant
byte left unchanged. [0x7894BC21]
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C. The least significant byte set to-all ones, and all other bytes of x left un-
changed. [0x876643FF)

The Digital Equipment VAX computer was a very popular machine from the late

1970s until the late 1980s. Rather than instructions for Boolean operations aND
! and or, it had instructions bis (bit set) and bic (bit clear). Both instructions take
a data word x and a mask word m. They generate a result z consisting of the bits of
x modified according to the bits of m. With bis, the modification involves setting
z to 1 at each bit position where m is 1. With bic, the modification involves setting
z to 0 at each bit position where mis 1.

To see how these operations relate to the C bit-level operations, assume we
have functions bis and bic 1mp1ement1ng the bit set and bit clear operations, and
that we want to use these to implement functions computmg bitwise operatlons |
and - w1thout usmg any other C operations. Fill in the missing code below. Hmt
Wnte (of ’ expressions for the operations bis and bik. .
/* Declarations of functions implementing operations bis and bic */
int bis(int x, int m);
int bic(int x, int m);

/* Compute x|y using only calls to functions bis and bic */
int bool_or(int x, int ¥} {

int result = ______ _;

return result;

} "
L . «t '
/* Compute x"y using opnly cplls to functions bis and bic */ 5
int bool_xor{int x; int y)- {
’ int-result = ____ ;
} return result;
.

2.1.8 Logical Operations in C

! C also provides-a set of logical operators | |, &, and !, which cogrespond to the
OR, AND, and NoT operations of logic. These can easily'be confused with the bit-
' level operations, but their behavior is quite different. The logical operations treat

| any nonzero argument as representing TRUE and argument 0 as representing FALSE.
' : They return eithiet 1 or 0, irfidicating a result of either TRUE of FALSE, respectively.
| f .

i| Here are some examples of expression evaluation:

I
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Expression Result
10x41 ox00
10x00 0x01
110x41 0x01

0x69 && O0x55 0x01
0x69 {| 0x55 0x01

Observe that a bitwise operation will have behavior matching that of its logical
counterpart only in the special case in.which the arguments are restricted to 0
or 1.

A second important distinction between the logical operators ‘&&’ and ‘| |’
versus their bit-level counterparts %’ and *|’ is that the logical operators do not
evaluate their second argument if the result of the expression can be determined
by evaluating the first argument. Thus, for example, the expression a && 5/a will

never cause a division by zero, and the expression p &% *p++ will never cause the
dereferencing of a null pointer.

Suppose that x and y have byte values 0x66 and 0x39, respectlvely Fﬂl in the
following table indicating the byte values of thé differént C expressions:

Expression Value Expression Value "
x&y e —_— x&ky -

x1y —_— xily

~x |~y e Ix Ity e

xkly x && ~y

Usmg only b1t—1evel and loglcal operatlons write a C expressxon that is equ:valent

to x == y. In other words, it will return 1 when x and y are equal and O otherwise.

2.1.9 .ShifuQperations in®
roat

e also provides a set,of shzﬁ op,era‘qong for shifting bit patterns to the left and’ to
the nght For an Operand x having bit representation [x,,_1, X, _2. - . ., X}, the c
expression x << k yields a value with bit representation (x,,_;_y. xw_k 2v o v s X
0,...,0] Thatis, x is shifted & bits to the left, dropping off the & most significant
blts and filling the right end with & zeros. The shift amount should be a value
between 0 and w — 1. Shift operations associate from left to right, so ¥'%< j <<k
is equivalent to (x << j) << k.

There is a corresponding right shift operation, written in C as x >> k, but it has
a slightly subtle behavior. Generally, machines support two forms of right shift:
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Logical. A logical right shift fills the left end with k& zeros, giving a result
[O, Ceey 0, Xup—1r Kwp—2s + = - xk].

Arithmetic. An arithmetic right shift fills the left end with & repetitions of the
most significant bit, giving a result [x,_1, .. ., Xy_1s Xy 15 Xyy_2s - -« X}
This convention might seem peculiar, but as we will see, it is useful fox
operating on signed integer data.

As-cxamples, the following.table shows-the effect of applying the.different
shift operations to two different values:of.dn 8-bit argument x:

Operation Value ] Value 2

Argument x [01100011]  [10010101]
x << 4 [00110000]  [01016000]
x >> &' (logical) [0o0p0110]  [00001001]

x >> 4 (arithmetic)  [00000110]  [72111001)

The italicized digits indicate the vaiues that fill the right (left shift) or left {right
shift) ends. Observe that all but one entry involves filling with zeros. The exception
is the case of shifting [10010101] right arithmetically, Since its most signiﬁcant bit
is 1, this will be used as the fill value.

The C standards do not precisely define which type of right shift should be
used with signed numbers—either arithmetic-or logical shifts may be used. This
unfortunately means that any code assuming one form or the other will potentially
encounter portability problems. In practice, however, almost all compiler/machine
combinations use arithmetic right shifts for signed data, and many programmers
assume this to be the case. For unsigned data, on the other hand, right shifts must
be logical.

In contrast to C, Java has a precise definition of how right shifts should be
performed. The expression x >> k shifts x arithmetically by k posmons, while
x >>> k shifts it logically.

Fillin the table below showmg the effects of the dxfferent shift operat1ons on smgle—
byte quantities. The best way to think about shift operations is to avorkewith binary
representations. Convert the initial values to binary, perform the shifts, and then
cénvert back to hexadecimal. Ea‘ch of the dniswers should bé 8 blnary digits or 2
hexadecimal digits.

. Logii::al ‘Arithmetic
x x<< 3 x>>»2 x>>2

Hex Binary Binary #H:?x Binary Hex Binary Hex

0xC3 -
0x75
0x87 R — e
0x66
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! Aside shifting by k,for large valuesof x = # T, e

For a datg type consisting of w bits, whdt shbuld be the effect ?')i"’ﬁff_‘ﬁfii’hg by some value £ > w? For
- example, what should be the effect of corputirig the following expressions, assurhing data'type int has
L3 ﬁ L]

w=232 N
b » . ﬁ, * i3
L ints %‘va} = OxFEPCBf;\g?ﬂ << 32 4: PR
int aval = OxFEDCBA98 »>> 36; .

4

ko8

OxFEDCBA9Su 3> 407

ynsigned uval
M i 4 ok o BENe o N 3, s aw 4 e . .
The'C staﬁcfé;ds carefully'avoid sfating What shiould B¢ done ir such a case:On many machines, the

3 shiftinstructions considér only the lower log, w Bits of the shift émount when shifting a wbit value, dnd,
be computed as if they wete by,amounts'0, 4, and 8, respectively, giving results
* Y WEE el L E ik

s

" 1vdl  OxFEDCBASB “ o W ) ) .
.aval  OXFFEDCBAYS . § 4 3
uvalt  OxOQOFEDGBA, # s b . # X

¢ thé word size.; « y e

: e #
s e o s w8 Bean LB o & e oy an s % s oG e = .
Java; on the other hahd, spécifically requires that shift amounts should bé computed in the modular
{ fashioni we have shown. | “A* »  fuwomea N et
s Pow 2 E PN 1 % . L Ba S -
PONSEOGIE WS, gt = s LA o LY [T FEY =

Aside Operator preceaenc‘é issues,with shift operations”

“

i ever, in C the former expressionds equivalent to,1 << ( 2+3% <€ g, since addition (and Subtraction) have
higher precedence fhan shifts. The left-to-right associativity rulé then causes this'to be parerithesized

as(1 << (2+3)) << 4, giving value 512, rather ’ﬂ'&gn the _inﬁtqndéfdfﬂ.q
§ thes€ar¢ difficult:to’Spot by insplction-WHdr irr doubt} piiin pdrefitheses!

Aty B . "
e OF m % PR L EY - b B ®

#

o B

2.2 Integer Representations

Inthis section, we describe two different ways bits can be used to encode integers-—
one that can only represent nonnegative numbers, and one that can represent
negative, zero, and positive numbers. We will see later that they are strongly
related both in their mathematical properties and their machine-level implemen-
tations, We also investigate the effect of expanding or shrinking an encoded integer
to fit a representation with a different length.

Figure 2.8 lists the mathematical terminology we introduce to precisely de-
fine and characterize how computers encode and operate on integer data. This

so the shift"4mount is computéd as k'fod 1+ For &xample, with i-= 32, the above three shifts would _

This behaviotjs not, guarante&d {of C'programs; however,and $4'shift amounts should be keptless than

v s L T A S T = LN
It might be fenipfing to write'the expression 1<<2.4 3<<_4f intending it to méan (1<<2) + (3<<4). How- -

Getting the precedgnce wrong in C expretsions,js a cémmon.source of program errors, and often

£
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Symbol Type Meaning . Page
B2T, Function Binary to two’s complement 64
B2l Function Binary to unsigned 62
2B, Function Unsigned to binary 64
uzr,, Function Unsigned to two’s complement 71
128, Function Two’s complement to binary 65
72U, Function Two’s complement to unsigned 71
TMin, Constant Minimum two’s-complement value 65
TMax,, Constant Maximym two’s-complement value 65
UMax,, Constant Maximum unsigned value 63
+ Operation  Two's-complement addition 90
+ Operation Unsigned addition 35
* Operation  Two’s-complement multiplication 97
* Operation  Unsigned multiplication 96
- Operation  Two’s-complement negation 95
W Operation  Unsigned negation 89 ol

Figure 2.8 Terminology for integer data and arithmetic operations. The subscript
w denotes the number of bits in the data representation. The “Page” column indicates
the page on which the term is defined.

terminology will be introduced over the course of the presentation. The figure is
included here as a reference.

2.2.1 Integral Data Types

C supports a variety of integral data types—ones that represent finite ranges of
integers. These are shown in Figures 2.9 and 2.10, along with the ranges of values
they can have for “typical” 32- and 64-bit programs. Each type can specify a
size with keyword char, short, long, as well as an indication of whether the
represented numbers are all nonnegative (declared as unsigned), or possibly
negative (the default.) As we saw in Figure 2.3, the number of bytes allocated for
the different sizes varies according to whether the ptogratfi is compiled for 32 or
64 bits. Baged on the byte allocations, the different sizes allow different ranges of
values to be represented. The only machine-dependent range indicated is for size
designator 1long. Most 64-bit programs use an 8-byte representation, giving a much
Wider range of values thal thé 4-byté représentation used with 32-bit programs.
H A e o st T T RS .

. On? important fgrz‘lgur'g' tonote 1n1Flg}1res 2.9 and 2.10is that the ranges are not
symmetric—the Tange of negative numbers extends one further than the range of
pcgitive numbers. We \:vill see why this happens when we consider ‘how negative
numbers are represented.

L r
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C data type Minimum Maximum
[signed] char -128 127
unsigned char 0 255
short —32,768 32,767
unsigned short 0 65,535
int —2,147,483,648 2,147,483,647
unsigned 0 4,294.967,295
long —2,147 483,648 2,147.483,647
unsigned long 0 4,294,967,295
int32_t —2,147 483,648 2,147 483,647
uint32_t 0 4,294,967,295
int64_t —9,223,372,036,634,775,808 9,223,372,036,854,775,807
uint64_t 0 18,446,744,073,709,551,615

Figure 2.9 Typical ranges for C integral data types for 32-bit programs.

C data type Minimum Maximum
[signed] char -128 127
unsigned char 0 255
short —32,768 32,767
unsigned short 0 65,535
int —2,147,483,648 2,147,483,647
unsigned 0 4,?.94,9@7,%935"t )
long —9,223,372,036,854,775,808 9,223,372,036,854,775,807
unsigned long 0 18,446,744,073,709,551,615
int32_t —2,147,483,648 2,147.483,647
uint32_t 0 4,294,967,295
int64_t —9,223,372,036,854,775,808 9,223,372,036,854,775807
uint64_t 0 18,446,744,073,709,551,615

Figure 2:10 Typical ranges for C integral data types for 64-bit programs.

»

-’

The C standards define minimum ranges of values that each data type must
be able to representi As shown in Figure 2.11, their ranges are thé same or smaller
than the typical implementations shown in Figures 2.9 and 2.10. In particular,
with the exception of the fixed-size data types, we see that they require only a

61
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C data type

Minimum

Maximum

[signed]char
unsigned char
short
ungigned short
int

unsigned

long
unsigned long

int32_t
uint32_t

int64_t
uint64_t

-127
0

—32,767
0

—32,767
0

—2,147,483,647

0

¢
—2,147,483,648
0

-9,223,372,036,854,775,808

0

127
255

32,767
65,535

32,767
65,535

2,147,483 647
4,294,967,295

2,147,483,647
4,294 967,295

9,223,372,036,854,775,807
18,446,744,073,709,551,615

Figure 2.11 Guaranteed ranges fo

that the data types have at least these ranges of values.

"

symmetric range of positi
could be implemented wi
to the days of.16-bit machine
with 4-byte numbers, and it typicall
types guarantee that the ranges of val
numbers of Figure 2.9, including the asymmetry b

2.2.2 Unsigned Encodings

Let us consider an integer data type of w bits. We
denote the entire vector, or as [Xy1, X2, - #-> xo]
within the vector. Treating ¥ as a number written in bin
unsigned interpretation of %. In this encoding,
latter case indicating that value 2/ should be inc

ve and negative

e

r C integral data types. The C standards require

numbers. We also see that data type int
th 2-byte numbers, although this is mostly a throwback
s. We also seexthat size long can be implemented
y is for 32-bit programs. The fixed-size data
lues will be exactly those given by the typical
etween negative and positive.

write a bit vector as either X, to

each bit x;

to denote the individual bits
ary notation, we obtain the
has value 0 or 1, with the
luded as part of the numeric Value.

We can express-this interpretation asa function B2U, (for “binary to unsigned,”

z
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Figure 2.12

Unsigned number
examples for w =4.
When bit { in the binary
representation has value 1,
it contributes 2! to the
value.

10711 12 13 14 15 16

PRINCIPLE: Definition of unsigned encoding

For vector ¥ = [xy,_1, xy_g, . . ., Xg:

w1
‘ B2U,(H =) x2 (2.1)
i=0
|

In thi.s equation, the notation = mcang4hat the left-hand side is defined to be
equal to the right-hand side. The function B2U, maps strings of.zeros and,ones
oflength w to nonnegative integers. As examples, Figure 2.12 shows the mapping,
given by B2U, from bit vectors to integers for the following cases:

B2UL0001) = 0-2240.2240.241-29 = 0404041 = 1
B2U0101) = 0.2341.2240.2041.20 = 04+444+0+1 = 5
B2U4(1011) = 1-2240.22+4+1.2141.20 = 840+42+1 = 11
B2U,[1111) = 1-2341.2241.2141.2° = 8444241 = 15
(22)

In the figure, we represent each bit position i by a rightward-pginting blue bar of
length 2/, The numeric valtue associated with a bit vector then equals the sum of
the lengths of the bars for which the corresponding bit values are 1.

Let us consider the range of values thit can be represented using w bits, The
Teast value is given by bit vector [00 - - - 0] having integer value 0, and the greatest
valueis giverl by bit vector [11 - - 1] having infeger value UMax,, =Y 212 =
2% — 1. Using the 4-bit case as an example, we have UMax, = B2U,([1111]) =
2% — 1 =15. Thus, the function B2U w ¢an be defined as a mapping B2U ,: {0, 1}* —»
{,..., UMax,)}. " . )

The umsignéd?binary representation has the imp6rtant property thatevery
nimber between 0and 2% — 1has a unique encoding asa w-bit value. For example;
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there is only one representation of decimal value 11 as an unsigned 4-bit number—
namely, [1011]. We highlight this as a mathematical principle, which we first state
and then explain.

PRINCIPLE: Uniqueness of unsigned encoding

Function B2U , is a bijection. |

The mathematical term bijection refers to a function f that goes two ways:
it maps a value x to a value y where y = f(x), but it can also operate in reverse,
since for every y, there is a unique value x such'that f(x) = y. This is given by
the inverse function f -1 where, for our example, x = f ~1(). The function B2U,
maps each bit vector of length w to a unique number between 0 and 2* — 1, and
it has an inverse, which we call U2B,, (for “unsigned to binary”), that maps each
number in the range 0 to 2¥ — 1 to a unique pattern of w bits.

2.2.3 Two's-Complement Encodings

For many applications, we wish to represent negative values as well. The most com-
mon computer representation of signed numbers is known as two’s-complement
form. This is defined by interpreting the most significant bit of the word to have
negative weight. We express this interpretation as a function B2T',, (for “binary
to two’s complement™ length w):

PRINCIPLE:. Definition of two’s-complement encoding

For vector X =[x,y—1, Xw_2» - - - » Xg}
w—2 .
B2T () = —x,, 2" 4 3 x2 (2.3)
i=0

The most significant bit x,,_y is also called thie sign bif' Its “weight” is ~2%~,
the negation of its weight in an unsigned representation. When the sign bit is set
to 1, the represented vatue is negative, and when set to 0, the value is nonnegative.
As examples, Figure 2.13 shows the mapping, given by B2T, from bit vectors to
integers for the fpllowing cases:

B2T,([0001) = -0-2340-2240.2'+1-2° = 0+0+0+1 = 1
B2T,(0101) = -0-28%1.2240.2041.20 = O-Si;fijl-0+1 = 5
B2T,(1011) = -1-2340.22+1.2'4+1.2° = —8+0+2+1 = -5
BT (1111) = -1-224+1,22+1.2141.20 = —8+4+2+1 = -1

24)

1 ®

In the figure, we indicate that the sign bit has negative weight by showing it as
a leftward-pointing gray bar. The numeric value associated with a bit-vector s
then given by the combination of the, possible leftward-pointing gray,bar and the
rightward-pointing blue bars.

T A -




Section 2.2 Integer Representations 65

Figure 2.13
Two’s-complement
number examples for
w=4. Bit 3 serves as a
sign bit; when set to 1, it
contributes —23 = —8 to 8- 6 7 8
the value. This weighting }

is shown as a leftward- [0001]
pointing gray bar.

[0101]
11011] §

{1111] B

We see that the bit patterns are identical for Figures 2.12 and 2.13 (as well as
for Equations 2.2 and 2.4), but the values differ when the most significant bit is 1,
since in one case it has weight +8, and in the other case it has weight —8. |

Let us consider the range of values that can be represented as a w-bit two’s-
complement number. The least representable value is given by bit vector [10 - - - 0]
(set the bit with negative weight but clear all others), having integer value
TMin,, = —2"~1. The greatest value is given by bit vector [01- - - 1] (clear the bit
with negative weight but set all others), having integer value TMax,, = Z}":'Gz 2 =
2v-1_ 1. Using the 4-bit case as an example, we have TMing = B2T,([1000]) =
-2%=—8and TMax, = B2T4([0111) =22 + 21 + 0 =442+ 1=7.

We can see that B2T, is a mapping of bit patterns of length w to numbers be-
tween TMin,, and TMax,,, written as B2T ,: {0, 1}* — {TMin,, ..., TMax,}. As
we saw with the unsigned representation, every number within the representable
range has a unique encoding as a w-bit two’s-complement number. This leads to
a principle for two’s-complement numbers similar to that for unsigned numbers:

PRINCIPLE: Uniqueness of two's-complement encoding
Function B2T, is a bijection. |

We define function 72B,, (for “two’s complement to binary”) to be the inverse
of B2T,. That is, for a number x, such that TMin,, < x < TMax,,, T2B,,(x) is the
(unique) w-bit pattern that encodes x.

‘ DAGEITAB) i st oo ShomrascasaitBied
Assuming w =4, we can assign a numeric value to each possible hexadecimal
digit, assuming either an unsigned or a two’s-complement interpretation. Fill in
the following table according to these interpretations by writing out the nonzero
powers of 2 in the summations shown in Equations 2.1 and 2.3:
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—

X
Hexadecimal Binary B2U 4(%) B2T (%)
0xE [1110] 284224021=34 234224212
0x0 [,
Oxb — P e

0x8 e

0xD SURT, S i an

QxF . U

Figure 2.14 shows the bit patterns and numeric values for several important
numbers for different word sizes. The first three give the ranges of representable
integers in terms of the values of UMax,, TMin,,, and TMax,,. We will refer
to these three special values often in the ensuing discussion. We will drop the
subscript wand relfer tothe values UMax, TMin, and TMax when w can be 1nfprred
from context Or, 18 not central to the cﬁscussmn

A few pomts are worth h1gh11ghtmg about these numbers. First, as observed
in Figures 2.9 and 2.10, the two *s-complemgnt range is, asymmetric: |TMin| =
|TMaxl + 1; that is, thefe is no positive counterpart to TMin. As we shall see, this
leads to some peculiar propertles of two's-complement arithmetic and.can be the
spurce of subtle program bugs. This as metry arises becatse half the b1tpatterns
(those with thcg’ sign bit set to 1) represent negative numbers, while half (those
with the sign bit set to 0) represent nonhegative numbers. Since 0 is nonnegatwe
this means that it can 'represent one less posnwe number thai negative. Second,
the maximum unsigned value is just over twice the'maximum two’s- complement
value: UMax = 2TMax-+ 1. All of the'Bit patterns'that denote fiegativé numbérs in
two ’s-complement notation beoom'e positive values in an unsigned representatlon

g

! Word size w

Value 8 16 32 64
UMax, ~ OxFF  OxFFFF  OxFFFFFFFF OXFFFFFFFFFFFFFFFF
255 65,535 4294967295 18,446,744073,709,551,615
Tme 0x80 0x8000 0x80000000 - 0);8900000000000000
-128 —32,768 —2,147,483,648, -9 ,223,372,036,854,775,808
TMax,, OxTF Ox7FFF OxTFFFFFFF ' Ox7FFFFFFFFFFFFFFF
127 32,767 2,147 483,647 9,223 372,036,854,775,807
-1 OxFF O0xFFFF OxFFFFFFFF OxFFFFFFFFFFFFFFFF
0 03{00 0x0000 0}:0000_0000 0x0000000000000000

Figure-2.14 [mportant numbers. BotH numeérit values and:-hexadecimal répresenta-
tions are shown.




Section 2.2 Integer Representations 67
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Aside More on fixed-size integer types # .

For some programs, it is essential that data types be encoded using representations with specific sizes.
For example, when wrmng progranis to enable a machine to communicate over the Internet. accordmg
to a standard protocol, it is important to have.data types cofipatible with those spécified By the protocol.
We have seen that some C data types, especially long, have different ranges on different machines,
and in fact the G standards only specify the minimum ranges for any data type, not the exact ranges.
Although we can choose data types that will be compatible swith standard representations on most
machines, there is no guarantee ol portability.

We have already encountered the .32- and 64-bit versions of fixed-size mteger types (Figure 2.3);
théy are part of larger»class of data types The ISG ‘99 standard introduces this class of mteger tybes
in the file stdint.h. This file defines a sef of data types with declarations of" the fotin idtN _t, and

uintN_t, specifying N-bit signed and unsigned integers, for different values of N. "The exact values of
* N are 1mplementat10n dependent,-but most compilers allow values of 8, 16, 32, and 64. Thus, we tan
unambiguously declare an urfsigned 16-bit variable by giving it type uint16_t, and a signed variable
of 32~b1ts as int32_t. @

Along with these data types are a set of rpacros defining the minimum and max1mum value;s for
each value of N. These have hanies of-the form"INTN SMIN, INTNV MAX, and UINTN _ max *

Formatted printing with fixed- width types requlres use of macros that expand into formatstrmgs
fina system—de,pendent manner. So, for example, the values of variables x and y of type 1nt32 t and
; int64_t can be prmted bythe followmg call to printf

printf("¥ &= %0 PRI4A32° &, y = %" PRIu64~"\n", ¥, yk

When compﬂed as"a 64-bit prograrh, macrb PRIA32 expands to the stfmg nd", while PRJ;u64~expands
to the palr of strmgs "1t "u" When the C préprocéssor encountérs a sequeiice of string cénstants
separated only by 5paces {or other Whltequpe charactérs), it concatenates them together. Thus, the
i above call to printf becomes

L

an

TR RSN

2

‘printf ("k =%d, 3}}"’—“ %iu\n® - x, y)‘, S . f oy i
% Usmg the 5 Iacros, ensurcs f]laﬁ a correg:t fqrmat*jstrmg thl be generated regardless of how the code is

, compiled.

.

¥ & ud i % o 1)

Figure 2.14 also shows the representations of constants —1 and 0. Note that —1
has the same bit representation as UMax—a string of all ones. Numeric value ) is
represented as a string of all zeros in both representations.

The C standards do not require signed integers to be represented in two’s-
complement form, but nearly all machines do so. Programmers who are concerned
with maximizing portability across all possible machines should not assume any
particular range of representable values, beyond the ranges indicated in Figure
2.11, nor should they assume any particular representation of signed numbers.
On the other hand, many programs are written assuming a two’s-compiement
representation of signed numbers, and the “typical” ranges shown in Figures 2.9
and 2.10, and these programs are portable across a broad range of machines
and compilers. The file <limits.h> in the C library defines a set of constants
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Aside Alternativeé representations of signed numbers .. : o : .
[ There are two other standard. representatlons for ngned'r;umbers 3 ) w A
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' < Ones’ conrxpj;emem‘vc This is thé Same as two s complenient, excepy | that the‘mostr 51gmﬁcant bit has
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[ « oweight—(2% 1~ 1'rather thgh —2%71 e L4

dhe # ' ap—2 é

‘ . Y B0, Ah,m@Y” 1’“‘"”1)“2 22 ’ ,-
‘ B =0 ﬁ N

[NV

Sign magmtud% The most mgmﬁcann bit is a-gign bit that, determmes whether.the rémammg bits
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] Bothﬁof these representat1ons have the curious property that there are two diffetent encodm‘gs of the
\E mimber 0. For both Iepresentatlons [OO -Ofis mterpreted as™40, The-value ~0" can be represented
: in glgﬂ-magmtude form’as [107. - -0] and in oney’ complement as [11 -1). Althotigh machiries based ;
on ones’ complemeht repr sentations were built in the past, almost all modern machines use two's |

complement We will see that sign- magmtude encodu’lg is ued with floating pomt gumbers ; y
J Note the different pogjtion of apostrophes; two’s complement versiis ones complement "THe tefm
|l “two’s complement” arlses from the fact that forwnonnegatlve x we COmputq a*w-bit repregentation
of —x d32"% —x (a smgle twcfj The term “ones’ complement” cgmes frorq ‘the property-that we can
compute —x in this notaticn as [111-* - 1}~ x (multiple opes).

e 4 4

§
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i delimiting the ranges of the different integer data types for the particular machine 1
on which the compiler is running. For example, it defines constants INT_MAX, INT_

MIN, and UINT_MAX describing the ranges of signed and unsigned integers. For a

two’s-complement machine in which data type int has w bits, these constants

‘[ correspond to the values of TMax ,, TMin,, and UMax,,. ]
The Java standard is quite specific about integer data type ranges and repre- §

sentations. It requires a two’s-complement representation with the exact ranges

f shown for the 64-bit case (Figure 2.10). In Java, the single-byte data type is called

I byte instead of char. These detailed requirements are intended to enable Java
programs to behave identically regardless of the machines or operating systems
running them.

To get a better understanding of the two’s- complement representation, con-
: sider the following code example:

short x = 12345;
short mx = -Xx;

show_bytes((byte_pointer) &x, sizeof (short));
show_bytes((byte_pointer) &mx, sizeof (short));

b B w N~
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12,345 12,345 53,191

Weight Bit Value Bit Value Bit Value
1 1 1 1 1 1 1

2 0 0 1 2 1 2

4 0 0 1 4 1 4

8 i 8 s] 0 0 0

16 1 16 0 0 0 0

32 1 32 0 0 0 0

64 0 0 1 64 1 64

128 0 0 1 128 1 128
256 0 0 1 256 1 256
512 0 0 1 512 1 512
1,024 0 0 1 1,024 1 1,024
2,048 0 0 1 *2,048 1 2,048
4,096 1 409 0 0 0 0
8,192 1 8192 0 0 0 0
16,384 0 0 1 16,384 1. 16384
432,768 0 0 1 —32,768 1 32768
Totdl 12,345 —12345 53,191

Figure 2.15 Two's-complement representations of 12,345 and —12,345, and
unsigned representation of 53,191. Note that the latter two have identical bit
representations.

When run on a big-endian machine, this code prints 30 39 and cf c7, indi-
cating that x has hexadecimal representation 0x3039, while mx has hexadeci-
mal representation OxCFC7. Ekxpanding these into binary, we get bit patterns
(0011000000111001] for x and [1100111111000111] for mx. As Figure 2.15 shows,
Equation 2.3 yields values 12,345 and —12,345 for these two bit patterns.

*:S«’l

[Practice Problem 2,18 (solution page149), ... i siboe s
In Chapter 3, we will look at listings generated by a disassembler, a program that
converts an executable program file back to a more readable ASCII form. 'Ihese
files contain many hexadecimal numbers, typically representing values in two’s-
complement form. Being able to recognize these numbers and understand their
significance (for example, whether they are negative or positive) is an important
skill.

For the lines labeled A-I (on the right) in the following listing, convert the
hexadecimal values (in 32-bit two’s-complement form) shown to the right of the
instruction names (sub, mov, and add) into their decimal equivalents:
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i 4004d0: 48 81 ec ¢0 02 00 00 sub $0x2e0, %rsp 4.
Pl 4004d7: 48 8b 44 24 a8 mov  —0x58(%rsp),%rax B.
' 4004dc: 48 03 47 28 add  0x28(%rdi),%rax c.
4004e0: 48 89 44 24 dQ mov Yrax,-0x30 (%rsp) D.
4004e5: 48 8b 44 24 78 mov 0x78 (Yrsp) ,hrax E.
! 4004ea: 48 89 87 88 00 00 00 nov Yrax,0x88(%rdi) F.
4004f1: 48 8b 84 24 £8 01 00  mov  Ox1f8(Y%rsp),%rax a.
4004£8: 00
4004f9: 48 03 44 24 08 add 0x8 (%rsp) ,hrax
j 4004fe: 48 89 84 24 c0 00 00 mov %rax,OxcO(%rsp} H.
‘ 400505: 00
400506: 48 8b 44 d4 b8 mov -0x48(%rsp,%rdx,8) ,%rax I.

2.2.4 Conversions between Signed and Unsigned

C allows casting between different numeric data types. For example, suppose
i! : variable x is declared as int and u as unsigned. The expression (unsigned) x

converts the value of x to an unsigned value, and {int) u converts the value of u
\ to a signed integer. What should be the effect of casting signed value to unsigned, ‘
or vice versa? From a mathematical perspective, one can imagine several different ;
conventions. Clearly, we want to preserve any value that can be represented in ;
both forms. On the other hand, converting a negative value to unsigned might yield ,
zero, Converting an unsignied value that is too large to be represented in two’s- o
complement form might yield TMax. For most implementations of C, however,
the answer to this question is based on a bit-level perspective, rather than on a
E nuineric one. |
For example, consider the following code:

[ 1 short int |, v, = -12345;
2 unsigned short uv = (unsigned short) v;
{ 3 printf("v = %d, uv = ful\np"; v, uy);
H '

When run on a two’s-coinplement machine, Et generates the followiing output:
# ¥
v = —12345, uv = 53151

R What we see here is that the effect of casting is to keep the bit values identical
but change how these bits are interpreted. We saw in Figure 2.15 that the 16-bit
‘ two’s-complement répresentation' of —12,345 is identical fo the 16-bit unsighed
‘ représentétioh ‘of 53,191. Casting froi short to unpsigned short changed the
numeric value, but ot the bit representation. !

Similarly, cnsider the following code:

4

1 unsigned u = 4294967295u; /* UMax */ !
2 Ant tu =.{int) u;
. -
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3 printf("u = Zu, tu = %d\n", u, tu);
When run on a two’s-complement machine, it generates the following output:
= 4294967295, tu = ~1

We can sce from Figure 2.14 that, for a 32-bit word size, the bit patterns represent-
ing 4,294,967,295 (UMaxs,) in unsigned form and —1 in two’s-complement form
are identical. In casting from unsigned to int, the underlying bit representation
stays the same.

This is a general rule for how most C implementations handle conversions
between‘signed and unsigned numbers with the same word size—the numeric
values.might change, but the bit patterns do not. Let.us capture this idea in
a more mathematical form. We defined functions U2B,, and 72B,, that map
numbers to their bit representations in either unsigned or two’s-complement form.
That is, given an intéger x in the range 0 < x <*UMax,, the function U2B;,(x)
gives the unique w-bit unsigned representation of x. Similarly, when x is.in the
range TMin, <x'< TMaxw, the function 72B,,(x) gives the unique w-bit two’s-
complement representatmn ofix.

Now define the function 72U, as T2U ,(x) = B2 U w(T2B,,(x)). This function
takes a number between TMin,, and TMax,, and yields a number between 0 and
UMax,,, where the two numbers have iclentical bit representations, except that
the argument has a two’s-complement representation while the redult is unsigned.
Similarly, for x between 0 and UMax,, the funetion U27,,, defined as U27 ,(x) =
B2T,,(U2B,,(x)¥ yields the number having the same two’s-complement represen-
tation as the unsigned representation of x.

Pursuing our 'earlier examples, we see from:Figure 2.15 that 72U ¢(—12,345)
= 53,191, and that U27;4(53,191) = —12,345. That is, the 16-bit pattern written in
hexadecimal as 0xCFC7 is both thg 4wo’s-complement representation of —12,345
and the unsigned representation of 53,191. Note also that 12,345+ 53,191 =
65,536 =29, Thjs property generalizes to a relationship between the two nu-
meric values (two's complement and unsigned) represented by a given bit pat-
tern. Similarly, from Figure 2.14, we see that T2Us(—1) = 4,294,967,295, and
U27T3,(4,294,967,295) = —~1. That is, UMax has the same Bit representation in un-
signed form as does —1 in two’s-complement form. We can also see the relationship
between these two numbers: 1+ UMax,, = 2%. d

We see, then, that function 720U describes the tonversion of a two's-
complement number to its unsigned counterpart, while U2T converts in the op-
posite difection. Thiese describe the effect of casting between these data types in
most Cimplementations.

t

Usmg the tabie you ﬁlled in when solvmg Problem 2.17,fill in tHe followmg table
describing the function T72U,:

71
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. x T2U 4(x)
. -8

-3
-2

-1

0 —

] 5

The relationship we have seen, via several examples, between the two’s-
complement and unsigned values for a given bit pattern can-be expressed as a
property of the function T2U:

PRINCIPLE: Conversion from two’s complement to unsigned
For x such that TMin}, < x < TMak,,;: t

x-+2% 2<0
x>0 Bt

(2.5)

U, (x) = [
[ |

X,

For example, we saw that T2U(—12,345) = —12,345 + 216 — 53,191, and also
that T2U ,(—1) = —1+4 2% = UMax,, ‘ ‘

This property can be derived by comparing Equations 2.1 and 2.3. |

1 ] |

_ DERIVATION: Conversion from two’s complement to unsigned 5
) Comparing Equations2.1 and 2.3, we can see thatfor bit pattern ¥, if we compute
the difference B2U (¥} — B2T,(¥),the weighted suims for bifs from 0 fow — 2 will
caricel each’dther, leaving a value B2U (%) = B2F,(X) = x,,_q (20l — 2wy
x,_12%. This givés a relationship B2U (%) = B2T (%) + x,p_12%. Wé-therefore
have

B2Uw(Tsz(x)) :T?Uw(x)=x—l—xu;_12w (26) :

In a two’s-complement representation of x, bit x,,_; determines whether or not x
is negative, giving the.wo cases of Equation 2.5. |

f n

As examples, Figure 2.16 compares how functions B2U and B2T-assign values

: to bit patterns for w = 4. For the two’s-complement case, the most significant bit 3
serves as the sign bit, which we diagram as a leftward-pointing gray bar. For the a
unsigned case, this bit has positive weight, which we show asa rightward-pointing
black bar. In going from two’s complement to unsigned, the most significant bit
changes its weiglit from —8 to +8..As a consequence, the values that are nega-
i tive in a two’s-complement 'representation‘increase by 2* = 16 with arr unsigned
. representation. Thus, —5 becomes +11, and —1 becomes +15.
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Figure 2.16 ¢ ] —2%a -8
Comparing unsigned
and two’s-complement
representations for w =4,
The weight of the most
significant bit is —8 for
two’s complernent and +8 8-7-6-5-4-3-2-1 0123 45 &

+~

73
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——— ]

for unsigned, yielding a net —— —+— —+—
difference of 16. {to11]

[1111]

Figure 2.17

Conversion from two's
complement to unsigned.
Function T2U converts amt
negative numbers to large
positive numbers,

2W

2% Unsigned

Two's
complement 0

I _2w-1

Figure 2.17 illustrates the general behavior of function T2U. As it shows, when
mapping a signed number to its unsigned counterpart, negative numbers are con-
verted to large positive gumbers, while nonnegative.numbers remain unchanged.

Explain how Equation 2.5 applies to the entries in the table you generated when
solving Problem 2.19. 4

17

Gotng in the other direction, we can state the relationship between an un-
signed number « and its signed counterpart U2T,(s):
PRINCIPLE: Unsigned to two’s;complement conversion
For u such that 0 < u < UMax,,;:

u, u < TMax,,,

u—2% u>TMax, @7)

- 02T, (u) = {
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Figure 2.18
Conversion from
unsigned to two's
complement. Function Unsigned 2"
U2T converts numbers

greater than 2%~1—
negative values.

2W

+2W—1

lto
Two's

complement

_2W‘—1

This principle can be justified as follows:

DERIVATION: Unsigned to two’s-complement conversion

Letii = U2B,,(u). This bit vector will also be the two’s-complement representation
of U2T,(u). Equations 2.1 and 2.3 can be combined to give

27, ) =—u, 2% +u !(2.8)

In the unsigned representation of i, bit u,,_; determines whether or not uis greater
i,

than TMax,, = 2¥~! - 1, giving the two cases of Equation 2.7. u

The behavior of function 'U2T is illustrated in Figure 2.18. For small
(< TMax,) numbers, the conversion from usisigned to signed preserves the nu-
meric value. Large (> TMax, ) numbers are converted to negative values.

To summarize, we considered the effects of converting in both directions
between unsigned and two’s-complement representations. For values x in the
range 0 < x < TMax,, we have T2U ,(x) = x. and. U2T ;(x) ==x~That is, num-
bers in this range have identical unsigned and two’s-complemént representations.
For values outside of this range, the conversions either add or subtract 2%. For
example, we have T2U ,(-1) = —1 + 2" = UMax,—the negative number clos-
est to zero maps to the largest unsigned number At the other extreme, One
can see that T2U ,(TMin,) ='—2¥~1 4:2% = 2v~1 = TMak,, + 127 ithe most neg-
ative number maps to an unsigned number just outside the range of pditive
two’s-complement numbers. Using the éxample of Figure 2.15, we can sce that
T2U 5(—12,345) = 65,536 + —12,345 = 53,191.

2.2.5 Signed versus Unsigned in C

As indicated in Figures 2.9 and 2.10, C’supports both signed and unsigned arith-
metic for all of its integer data types. Although the C standard does not spec-
ify a particular representation of signed numbers, almost all machines use two’s
complement. Generally, most numbers are signed by default. For example, when
declaring a constant such as*12345 or 0x1A2B, the value is considered signed.
Adding character ‘U’ or ‘v’ as a suffix creates an unsigned constant; for example,
123450 or 0x1A2Bu.
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C allows conversion between unsigned and signed. Although the C standard
does not specify precisely how this conversion should be made, most systems
follow the rule that the underlying bit representation does not change, This rule has
the effect of applying the function /2 T, when converting from unsigned to signed,
and 72U, when converting from signed to unsigned, where w is the number of
bits for the data type.

Conversions can happen due to explicit casting, such as in the following code:

int tx, ty;
unsigned ux, uy;

(int) ux;
(unsigned) ty;

tx
uy

1]

ok W N =

Alternatively, they can happen "implicitly'when dn expression of one type is as-
signed to a variable of another, as in the following code:

int tx, ty;
unsigned ux, uy;

tx = ux; /* Cast to signed''*/
uy = ty; /* Cast to unsigned */

L T S 5C N N J—

‘When printing numeric values with printf, the directives %d, %u, and %x
are used to print a number as a signed: decimal, an unsigned decimal, and in
hexadecimal format, respectively. Note that printf does not make use of any
type information, and so it is possible to print a value of type int with directive
%u and a value of type unsigned with directive d. For example, consider the
following code:

1 it x = -1,

2 unsigned u =.2147483648; /* 2 to the 3ist */
3

4 printf("x = %u = %d\n", x, x);

5 printf("u = %u = %d\n", u, w);

When compiled as a 32-bit program, it prints the following:

fn
]

4294967285
2147483648

-1
-2147483648

X
u

Inboth cases, printf prints the word first as if it represcnted an unsigned number
and second as if it represented a signed number. We can see the conversion
routines in action: 72Uz (x1) = UMaxf, =232 — 1 and U2T5,(23)y= 231 — 232 _
—‘231 = TMiﬂ32. ,

Some possibly nonintuitive behavior ariges due to C’s handling of expres-
stons contéining‘comfjinqtions of signed and unsigned quantities. When an op-
eration is performed where one operand is signed and the other is unsigned, C
implicitly casts the signed argument to unsigned and performs’ the operations
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Expression Typé Evaluation

’ 0o = 0U  Unsigned 1
-1 < 0 Signed £

: -1 < 0U  Unsigned 0%
2147483647 > -2147483647-1 Signed 1

21474836470 = -2147483647-1. .Unsigned 0*

2147483647 > (dint) 21474836480 Signed 1%
-1 > -2 Signed 1
{(unsigned) -1 > -2 Unsigned 1

Figure 2.19 Effects of C promotion rules. Nonintuitive cases are marked by “*'. When
either operand of a comparison is unsigned, the other operand is impilicitly cast to |
unsigned. See Web Aside DATA:TMIN for why we write TMins; as -2, 147,483, 647-1. J

assuming the numbers are nonnegative. As we will see, this convention makes
little difference for standard arithmetic operations, but it leads to nonintuitive
results for relational operators such as < and >, Figure 2.19 shows some sample
relational expressions and their resulting evaluations, when data type int has a
32-bit two’s-complement representation. Consider the comparison -1 < 0U. Since
the second operand is unsigned, the first one is implicitly cast to unsigned, and
herice the expression is equivalent to the comparison 4294967295U < 0U (recall
. that T2U ,(—1) =:=UMazx ), which of course is false. The other cases can be under-
stood by simila® analyses. v

Assuming the expressions are evaluated when executing a 32-bit program on a ma-
chine that uses two’s-complement arithmetic, fill in the following table describing
the effect of casting and relational operations, in-the style of Figure 2.19:

Expression Type Evaluation
i -2147483647-1 == 21474836480

-2147483647-1 < 2147483647 ]
s -2147483647-1U < 2147483647

-2147483647-1 < -2147483647
-2147483647-1U < -2147483647

iz
»

2.2.6 Expanding the Bit Representationof aNumber

while retalmng ‘the same numeric value Of course, this maynot be possible when
the déstination data type is too small to represent the' desired vahie! Converting
from a §maller toa lal;ger ‘data type, however, shc;uld always be possible. “
g " )

& One common operation is to convert between integers havmg different word sizes
i
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To convert an unsigned number to a larger data type, we can simply add
leading zeros to the representation; this operation is known as zero extension,
expressed by the following principle: =

PRINCIPLE: Expansion of an unsigned number by zero extension

Define bit vectors & = [u,,_1, uy,_3, . .., up] of width w and # =10, .. ., 0, Uy 1,
7 » ug] of width w', where w’ > w. Then B2U (&) = B2U . (it). [

w—Ds s - -

This principle can be seen to follow directly from the definition of the unsigned
encoding, given by Equation 2.1.

For converting a two’s-complement number to a larger data type, the rule
is to perform a sign extension, adding copies of the most significant bit to the
representation, expressed by the following principle. We show the sign bit x,,_; in
blue to highlight its role in sign extension.

PRINCIPLE: Expansion of a two’s-complement number by sign extension

Define bit vectors ¥ = [x,, 1, x,,_3. . . ., xp] of width w and ¥’ = Xt e v Xppots
Xy—1> Xw-2, - - - » Xp] of width w’, where w’ > w. Then B2T (%) = B2T ,(¥'). N

As an example, consider the following code:

i short sx = -12345; /* —12345 »/

2 unsigned short usx = sx; /+* 53191 */

3 int x = sx; /¥ ~12345 =*/

4 unsigned ux = usx; /* 53191 x/

5

6 printf("sx = %d:\t", sx);

7 show_bytes{(byte_pointer) &sx, sizeof (short));

8 printf ("usx = ¥u:\t", usx);

9 show_bytes((byte_pointer) &usx, sizeof (unsigned short));
10 printf("x = Jd:\t", x);




-
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Figure 2.20
Examples of sign

extension from w=3

to w = 4. For w =4, the 2= 4 |

1 shou bytes((byte_pmnter) &x, SlZQOf(ln‘t)g
12 printf("ux = %u:\t", ux);
13 show_bytes((byte_pointer) &ux, sizeof (unsigned});

When run as a 32-bit program on a big-endian machine that uses a two’s-
complement representation, this code prints the output

sx = -12345: cf c7
usx = 53191: cf c7
b'e = ~12345: ff £f <f c7

ux = b319i: 00 00 cf 7T

We see that, although the two’s-complement representation of —12,345 and the
unsigned representation of 53,191 are identical for a 16-bit word size, they dif-
fer for a 32-bit word size. In particular, 12,345 has hexadecimal representation
0xFFFFCFCT, while 53,191 has hexadecimal representation 0x0000CFCT. The for-
mer has been 51gn extended—16 copies of the most significant bit 1, having hexa:
decithal representation 0xFFFF, have been added as leading bits. The latter has
been extended with 16 leading zeros, having hexadecimal representation 0x0000.

As an iflustration, Figure 2.20 shows the'result of expanding from word size
w =3 tow = 4 by sign extension. Bit vector [101]represents the value —44+1=-3.
Applying sign extension gives it vector [1101] representing the value —8 + 4 +
1= —3. We can see that, for w = 4, the combined value of the two most significant
bits, —8 + 4 = —4, matches the value of the sign bit for w = 3. Similarly, bit vectors
[111} and [1111] both represent the value —1.

With this as intuition, we can now show that sign extension preserves the value
of a two’s-complement number,

combined weight of the 2' = 2 [

upper 2 bitsis -8 + 4=—4, 002 1 @

matching that of the sign - Lot
bit for w =3 i o oo B B o A

(101}

[1101] §

[111}

[1111]




,Section 2.2 ..Integer Representations 79

DERIVATION; :Expansion of a two’s:complement mumber by sign extension
Let w"=w 4 k. What we want to préve-is that »”
{1

BTt ([Xuw-1s - -+ Xu—1s Xyyo1s Xy -+ -+ XD = B2T , ([xyy_1, Xyy—as - - - » %))
— e

k times

The proof follows by induction on k. That is, if we can prove that sign extending
by 1 bit preserves the numeric value, then this property will hold when sign
extending by an arbitrary number of bits. Thus, the task reduces to proving that

B2Tw+1([xw_1, Xoyy—1o Kgg2s v 0 -5 xo]) = BZTw([Iw_]_, Xp—21 v == xo])

Expanding the left-hand expression with Equation 2.3 gives the following:
3

w—1
B2T1})+1([xw_l, Xpg—1> Xyg—2s « = v s 1'0]) = —xw_l?."” -+ Z x,-2'
i=0
w2
= —xw_12w + .X'w_izw_l “+ Z x,-2'
v +i=0

w-2
=—x, 1 (2“’ - 2"’_1) + Z x2
i=0

w—2
= —xw_l.'Z"’_l + Z x,-2’
i=(0
=B2T ([xy -1, Xp2, . - - xo])
The key property we exploit is that 2% — 2%~1 = 29-1 Thus, the combined effect
of adding'a bit of Weight +2" and of conVerting the'bit having weight —2°~to be
one with wéight2*~1 js tb pféserve the briginal numéric value. |

how that each of the fSllwing bit vectors i&-a two’s-complement representation
of —5 by applying Equation 2.3:
A. [1011]
B. [11011]
C. [111011]

Observe that the second and third bit vectors can be derived from the first by sign
extension.
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One point woirth making is that the relative order of conversion' from one
data size to another and between unsigned and signed can affect the behavior of
a program. Consider the following code:

i
short sx = -12345; /% -12345 %/
unsigned uy = sx; /* Mystery! */

printf("uy = %u:\t", uy);
show_bytes ({byte_pointer) &uy, sizeof (unsigned));

Lo W =

L4
When run on a big-endian machine, this code causes the following output to be
printed:

uy = 4294954951: f£f ff cf c7

This shows that, when converting from short to unsigned, the program first
changes the size and then the type. That is, (unsigned) sx is equivalent to |
(unsigned) (int) sx, evaluating to 4,294,954,951, not (unsigned) (unsigned i
short) sx, which evaluates to 53,191, Indeed, this convention is required by the
C standards.

= Con51de1' the followmg C functlons

int funi(unsigned word) {
return (int) ((word << 24} >> 24);
}

int fun2?(unsigned word) {
return {(int) word << 24) 35> 24;
i }

Assume these are gxecuted as a 32-bitprogram on a machmg that uses two’s-
complement ar1thmet1c Assume also that right shifts of signed valyes are pef;
formed arithmetically, while right shifts of unsigned values are performed logically.

A. Fll in the following table showing the effect of these functions for several
example arguments. You wilLfind it more convenient to work with a hexa-
» decimal representation. Just repember that hex digjts 8 through F have, their
most significant bits equal to 1.

W funi (w) fun?2 (w)

0x00000076
0x87854321
0x000000C9
0xEDCBA98Y

. Describe in words the useful computation each of these functions performs.
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2.2.7 Truncating Numbers

Suppose that, rather than extending a value with extra bits, wé redud¢ the number
of bits répresenting a number. This occurs, for example, in the following code:

1 int x = 53191;
2 short sx = (short) %; /+'-12345 %/
3 int y 2'5%; ! P yet 12345 #/

1y IH 2

Casting x to be short wilk truncate a 32-bit idt o a 16-bit short. As we saw
before, this 16-bit pattern isthe two’s-complement representdtion of —12,345,
When casting this back to int, sign extension will set the high-érder 16 bits to
ones, yielding the 32-bit two’s-complement representation of —12,345,

When truncating a w-bit number ¥ = [*p_ts Xz - . . ¥o] to ak-bit ‘number,
we drop’ the highrorder w — & bits, giving a bit vector ¥’ = [x,_;, x;_0, .. ., xg]
Truncating a number can alter its value—a form of overflow. For an unsigned
number, we can readily characterize the numeric value that will result.

PRINCIPLE: Truncation of an unsigned number

Let X be the bit vector [x,,_1, x,_s, . . +» %o, ana Iét X' be the result of truncating
jtto k bits: X' =[x, 1, x;,_,..., x0) Let x = B2U (%) and x' = B2U,(%"). Then
x'=x mod 2%, [ ]

The intuition behind this principle is simply that all of the bits that were
truncated have weights of the, form' 2/, where i > k, and therefore each of these
weights reduces to zero under the modulus operation. This is formalized by the
following derivation:

DERIVATION: Truncation of an unsigned number
Applying the modulus operation to Equation 2.1 yields

i

w-—1
B2U ([0 Xyp_gs e » xp]) mod 2% = [Z x,-z‘} mod 2*
i=0

k-1 )
= ’:Z x,—2‘:| mod 2*

i=0

k-1 .
= Zx,-Z'
i=0
= BZUk([xk_l, Xp Dy oo vy xo])

In this derivation, we make use of the property that 2/ mod 2* = () for any i > k.

n

A similar property holds for truncating a two’s-complerhent number, except
that it then converts the most significant bit into a sign bit:
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PRINCIPLE: Truncation of a two’s-complement number

Let X be the bit vector, [xy_1s Xw_2, - - - » %p), and let (:t' be the result of fruncating
it to k bits: ¥' = [xg_1, xk_z, ..., %] Let x,= B2T (%), and x' = B2T(i"). Then
x' = U2T,(x mod 2%). |

In this formulation, x mod 2% will be a number between 0 and 2F — 1. Applying
function U2T,, to it will have the effect of conyerting the most significant bit x;_; |
from having weight 2~ to having weight —2*~1, We can see this with the example :
of converting value x = 53,191-from int fo short. Singe 216 = 65,536 > x, we have
x mod 216 = x..But when we convert this nimber, to a 16-bit two’s-complement
number, we get x/-='533;191 — 65,536 = —12,345.

DERIVATION: Truncation of a"two’s-comp_lement number
Using a similar argument to the one we used for truncation of an unsigned number

shows that
b Il .
B2T, ([Xy—1» Xu—2, - - - » X)) mod 2F = B2U({x_y, Xx_2, - - - » XoD)

That is, x mod 2* can be represented by an unsigned number having bit-level rep-
resentation [%;_1, Xg..2, - - - » x4]. Converting this to a two’s~complemént numbet

gives x' = U2T(x mod 2%). | |

Summarizing, the effect of truncation for unsigned numbers is

'y

BZUk([Ik T XfPs o .Xo]) = BZUw([xw 1 X2 £+ s xo]) mod 2" (29)
l
while the effect for two’s-complement numbers is

B2Ty([Xp—1s ¥e2s - - - » %)) = U2T3(B2U  ([%uy_1x Xpp2: - - - - %o}, mod 2F) (2.10)

Prattice’Problem 2. 24:(5p T Gt ]
Suppose we truncate a 4-bit value (represented by hex dlglts O through F) toa 3—
bit value (represented as hex digits 0 through 7.) Fillin the table below showing
the effect of this truncation for some cases, in terms of the unsigned and two’s-
complement interpretations of those bit patterns.
"1
i

Hex Unsigned Two’s complement
Original  Truncated  Original  Truncated  Original  Truncated
0 0 0 e 0 R |
2 2 2 N 2 R |
9 1 9 [ ~7
B 3 11 eem e =5
F 7 15 L -1 _

Explain how Equations 2.9 and 2. 10 apply to these cases,

g a4y Pt

Ly
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2.2.8 Advice on Signed versus Unsigned '

As we have seen, the implicit casting of signed to unsigned leads to some non-
intuitive behavior. Nonintuitive features often lead to program bugs, and ones
involving the nuances of implicit casting can be especially difficult to see. Since the
casting takes place without any clear indication in the code, programmers often
overlook its effects.

The following two practice problems illustrate some of the subt)e errors that
can arise due to implicit casting and the unsigned data type.

T Ty A R T K CR hEAN
iPractice Problem:2.25° (solutiortpaqe*1s1) . ., & % & PN

Consider the following code that attempts to sum the elements of an array a, where
the number of elements is given by parameter length:

/* WARNING: This is buggy code */

float sum_elements(float a[], unsigned length) {
int i;
float-result = 0;

1
2
3
4
5
6 for (i = 0; i ¢= length-1; i++)
7 result += a[il;

3 return result;

9

}

When run with argument length equal to 0, this code should return 0.0.
Instead, it encounters a memory error. Explain why this happens. Show how this
code can be corrected.

string is longer than another. You decide to make use of the string library function
strlen having the following declaration:

/* Prototype for library function strlem */
sizae_t strlen(const char #s);

Here is your first attempt at the function:

/* Determine whether string s is longer than string t */
/* WARNING: This function is buggy */
int strlonger(char *s, char #*t) {

return strlen(s) - strlen(t) > 0;

}
{

When you tést this on some sample data, things do'not seem to work quite
right. You investigate further and determine that, when compiled as a 32-bit
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program, data type size_t is defined (via typedef) i header file stdio.h to'be
unsigned.

A. For what cases will this function produce an incorrect rgsult?

B. Explain how this incdrrect result comés about.

C. Shéw how to fix the code so that it will work reliably.

BT i e

We have seen multiple ways in which the subtle features of unsigned arith-
metic, and especially the implicit conversion of signed to unsigned, can lead to
errors or vulnerabilities. One way to avoid such bugs is to never use unsigned
numbers.’ In fact, few languages other than C support unsigned integers. Appar-
ently, these other' language designers viewed, them as more trouble than they are
worth. For example, Java supports only signed integers, and it requires that they
be unplemented with two’s-complement arithmetic. The normal right shift oper-
ator >> is guaranteed to perform ‘an arithmetic shift. The special operator>>> is
defined to perform a logical right shift.

Unsigned values are very useful when we want to think 8f words as just col-
lections of bits with no numeric 1nterpretat10n This occurs, for example, when
packing a word with flags describing various Boolean conditions. Addresses are
naturally unsigned, so systems programmers find unsigned-types to be helpful.
Unsigned values are also useful when implementing mathematical packages for
modular arithmetic and for multiprecision arithmetic, in which numbers are rep-
resented by arrays of words.

2.3 Integer Arithmetic

Many beginning programmers are surprised to find that adding two positive num-
bers can yield a negative result, and that the comparison x < y can yield a different
result than the comparison x-y < 0.,These properties are artifacts of the finite na-
ture of;computer arithmetic. Understanding the nuances of computer arithmetic
can help programmers write more reliable code.

2.3.1 Unsigned Addition Y

Consider two nonnegative integers x and y, such that 0 <x, y <2". Each of
these values can be represented by a w-bit unsigned number. If wé computetheir
sum, however, we have a possible range 0 < x +y < 2¥*1 -2, Representing this
sum could require w + 1 bits. For example, Figure 2.21 shows a;plot of the func-
tion x + y when x and y have 4-bit representations. The arguments (shown on
the horizontal axes) range from 0 to 15, Jbut the sum ranges, from'0 to 30, The
shape of the function is a sloping plane (the function is linear in both dlmen-
sions). If we were to maintain the sum as a (w + 1)-bit number and add it to
anothérevalue, we may require w + 2 bits, and so on. This continued “word size

¢
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32
28
24
20

16

~{ 0

2

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 hits.

inflation” means we cannot place any bound on the word size required to fully rep-
resent the results of arithmetic operations. Some programming languages, such
as Lisp, actually support arbitrary size arithmetic to allow integers of any size
(within the memory limits of the computer, of course.) More commonly, pro-
gramming languages support fixed-size arithmetic, and hence operations such
as “addition” and “multiplication” differ from their counterpart operations over
integers,

Let us define the operation +, for arguments x and y, where 0 < x, y < 2¥,
as the result of truncating the integer sum x + ¥ to be w bits long and then
viewing the result as an unsigned number. This can be characterized as a form
of modular arithmetic, computing the sum modulo 2¥ by simply discarding any
bits with weight greater than 2%~ in the bit-level representation of x 4- y. For
example, consider a 4-bit number representation with x =9 and y = 12, having
bit representations [1001] and [1100], respectively. Their sum is 21, having a 5-bit
representation [10101]. But if we discard the high-order bit, we get [0101], that is,
decimal value 5. This matches the value 21 mod 16 = 5.
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Aside Security vuinerability in getpeername .

S

Tn 2002, programmers involved-in the FreeBSD open-source operating-systems project realized that
their implementation of the getpeernadie library function had a security vilnerability. A simplified
version of their code went something like this:

T/ .
2 * Tllustration of code vulnerability similar to that found in )
3 * FreeBSD'sﬂimplbmentat{on ot‘getpeernaméf)

4 */

6 /+ Declaration of library function memcpy */

7. void *memcpy(void *dest, void, *src, gize_t n);

8 E

9 /% Kernel memory-region holding usér-actessible ‘data */

10, #define KSIZE 1024 .

1 char “kbuf [KSIZE];

12

13 /* Copy at most maxlen bytes from kernel region *to ugser buffer */

14  int copy_from:kernel(void *user_dest, int. maxlen) {

15 /* Byte count len is minimum of buffer sizZe ‘and ‘mdxlen */

16 int len = KSIZE < maxleh 7 KSIZE : maxlen;

17 memepy (user_dest, kbuf, len); °* -

18 return len; K

19 3}

o N PO *

In this code, we show the prototype for librmy?ungtion memepy on line 7, which is designed to copy
a specified number of bytes n from one region of memory to another.,

The function copy_from_kernel, starting at line 14, is designed to copy some of the data main-
tained by the operating systein kernel to &' designated regibn of memory accéssible’to the user. Most “”5
of the dath structures maintained by the’kernelshotild not be'readable by aruser, since they may cop-i 4
tain sensitive information about'other users and about otherjobs running on thie system, but the region
shown as kbuf was intended to be ofid’that the user cbuld fead. Thé parameter maxlen is intended to be
the length of the buffer allocated by the user and indicated by argbment uses dest: The computation
at line 16 then makes sure that no more bytes are copied than‘aré availablein eitherthe $curcg'or thé
destination buffer. a >

Suppose, however, that some malicious programmer writes code that calls copy_from_kernel'with
a negative value of maxlen. Then the miinimum corhputation‘on line, 16 will compute’ this value for len,
which will then be passed a& the parameter n fo memcpy. Note, howeVer, that pafameter n is declared’as
having data type size_£. This data type ig'declared] (via typedef }inthe liﬁgamﬁle stdio :h. Typically, 1f
is defined to be unsigned for 32-bit programs and unsigned long fos 64-bit-programs, Since argyment
n is-unsigned, memcpy will treaf'it as a very large pésitive number and dttempt to"copy that many bytes
frém the Kernel region to theshser’s buffer. Copying that mdny bytes (at least 231) will not actually
work, because the program will encounter invalid addresses in the procéss, butithé grogram could read
regions of the kernel memoty for which itis ot authorized.
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Aside Security Vulherability jrf
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getpeername (continued)-

"

o T # =

We can see that this probleni arises due to the mismatch betwaén data types: in one place the
length parameter'i§ Signed; 4n *anqtﬁier place itisunsigned. Such,mismatches cdn bea source of bugs
and, as this exampleshiows, can even Jead to secirity vulnérabilities. Fortunately, there were no reported
cases where a programmer had exploited the vulnerability in FreeBSD. They issued a seéurity advisory
“FreeBSD—SA;QZ:SS.sfgnea—enoﬁ’gdvising system administrators on how to apply a patch that would
removeuthge vulnerability. The bug‘cast ‘bé fixed by declaring parameter hax]len to copy_from_kernel
tobe of type size_ t, to'be consibtent with parameter n of memcpy. We should also declare local variable
len‘and the returnwvalue to be of typé size_t. S i
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We can characterize operation + as follows:

PRINCIPLE: Unsigned addition
For x and y such that 0 < x, y < 2%:

X+, x+y<2¥ Normal

oY= 2.11
CH {x-l')’—?-“’, 2% < x +y < 2% Overflow (211)

The two cases of Equation 2.11 are illustrated in Figure 2.22, showing the
sum x + y on the left mapping to the unsigned w-bit sum x +,, ¥ on the right. The
normal case preserves the value of x + y, while the overflow case has the effect of
decrementing this sum by 2¥.

DERIVATION: Unsigned addition

In general, we cansee that if x + y < 2%, the leading bit in the (w + 1)-bit represen-
tation of the sum will equal 0, and hence discarding it will not change the numeric
value. On the other hand, if 2 < x + y < 2%l the leading bit in the (w + 1)-bit
representation of the sum will equal 1, and hence discarding it is equivalent to
subtracting 2¥ from the sum. |

An arithmetic operation is said to overflow when the full integer result cannot
fit within the word size limits of the data type. As Equation 2.11 indicates, overflow

X+

Ll Overflow

x+y

Normal

Figure 2.22 Relation between integer addition and unsigned addition. When x + y
is greater than 2% — 1, the sum overflows.
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Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed
modulo 16,

occurs when the two operands sum to 2 or more. Figure 2.23 shows a plot of the
unsigned addition function for word size w =4. The sum is computed modulo
24— 16. When x -+ y < 16, there is no overflow, and x +} y is simply x + y. This is
shown as the region forming a sloping plane labeled “Normal.” When x + y > 16,
the addition overflows, having the effect of decrementing the sum by '16. This is
shown as the region forming a sloping plane labeled “Overflow.”

When executing C programs, overflows are not signaled as errors. At times,
however, we might wish to determine whether or not overflow has occurred.

PRINCIPLE: Detecting overflow of unsigned addition

For x and y in the range 0 < x, y < UMax,,, lets =x +|, y. Then the computation
of s overflowed if and only if s < x (or equivalently, s < y). |

As an illustration, in our earlier example, we saw that 9 +} 12 = 5. We can see
that overflow occurred, since 5 < 9.
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DERIVATION: Detecting overflow of unsigned addition

Observe that x + ¥ = x, and hence if s did not overflow, we will surely have s > x.
On the other hand, if s did overflow, we have s = x + y — 2. Given that y < 2%,
we have y — 2% < 0, and hence s = x + (y — 2%) < £. |

ﬁig:ir” '“?if'J i””f”‘”:““ﬁ‘;'"” o

LIALHERILEQDIE M2y Li(solutionpaget] 52Ys AL R
Write a function with the following prototype:

/* Determine whether arguments can be added without overflow */
int uadd_ok(unsigned x, unsigned y);

This function should return 1 if arguments x and ¥ can be added without
causing overflow.,

7

i1

Modular addjtiorrforms a mathematical stfucture known.as anabelian group,
named after the Norwegian'mathematician Niels Henrik Abel (1802-1829). That
is, it is commutative (that’s where' the “abelian” part coies in) and associative;
it has an identity. element 0, and every element has an ‘additive inverse. Let us
consider the set of w-bit unsigned numbers with addition operation +% . For every
value x, there must be some Value X $uch that = X +5, x = 0. This additive
inverse operation can be characterized as follows:

PRINCIPLE: Unsigned negation

For any number x such that 0 < x < 2%, its w-bit unsigned negation -*, x is given
by the following:

_wx=

(2.12)
|

" {x, x=0

2 —x, x>0

This result can geadily be derived by case analysis:

DERIVATION: Unsigned negation

1 - - 2 s
When x =0, the additive inverse is clearly. 0, For x > 0, copsider, the value 2% — x,
Observe that this number Is in the range 0 < 2% — x < 2% We can also see that

(x 42 — x)mod 2¥ = 2% mod 2% = 0. Hence it is the inverse of x under +. 1
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We can represent a bit pattern of length w = 4.with a single hex digit. For an
unsigned interpretation of these digits, use Equation 2.12 to fill in the following
table giving the values and tHe bit representations (in hex) of the unsigned additive
inverses of the digits shown.
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2.3.2 Two's-Complement Addition

With two’s-complemenf addition, we must decide what to do when the result is
either too large (positive) or too small (negative) to represent. Given integer
values x and y in the range —2¥~1 < x, y < 2%~} - 1, their sum is in the range
—-2¥ < x 4+ y = 2% — 2, potentially requiring w + 1 bits to represent exactly. As
before, we avoid ever-expanding data sizes by truncating the representation to w
bits. The result is not as familiar mathematically as modular addition, however.
1 Let us define x + y to be the result of truncating the integer sum x-+ y to be w
bits long and then viewing the result as a iwo’s-complement jfiumber.

PRINCIPLE: Two’s-complement addition

For integer values x and y in the range —2¥~1 < x, y <2%1 _1:

x+y—2¥ 2w layy ¥ Positive overfiow L *
x+ y={x+y, —2wl<x 4y <2¥l Normal (2.13) ’
i - x+y+2¥ x+y<-=2¢"1  Negative overflow ' i

[ |

This principle is illustrated in Figure 2.24, where the sum x + y isshown on the

; left, having a value in the range -2 < x + y < 2% — 2, and the result of truncating
the sum to a w-bit two’s-complement number is shown on the right. (The labels
' “Case 1” to “Case 4” in this figure are for the case analysis of the formal derivation

of the principle.) When the sum x + y exceeds TMax,, (case 4) we say that positive
overflow has occurred. In this case, the effect of truncation is to subtract 2% from
the sum. When the suth x + is 1éss thar TMin,, (case 1), we say that neganve
over;ﬂow has occurred. In thib case, thé effect of truncation is to add 2% §5 the sur.

The w-bit two’s-complement sum of two number§ has the exact same bit-level
representation as the unsigned sum. In fact, most computers use the same machine
instruction to perform either unsigned or signed addition.

. DERIVATION: Two’s-Complenient addition

' Singe, twa’ s~comp1ement addition has the exact same bit-level representation as
unsigned addition, we can characterize the operatwn +, as one of converting 1ts

| arguments to unsigned, performing unsigned addition, and then converting back
to two’s complement:
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Figure 2,24

Relation between integer
ang two's-complement
addition. When x + y is
fess than —2%~1, there is a
negative overflow. When
it is greater than or equal
to 2“1, there is a positive
overflow,

x4, ¥ = U2T ,(T2U ,(x) +% T2U,,()), (2.14)

By Equation 2.6, we can write 72U, (x) as %y-12% +x and T2U,(y) as
Yw-12" 4+ y. Using the property that +,, Is simply addition modulo 2¥, along with
the properties of modular addition, we then have

x +L, Y+ U2ngmUw(x) +:_, T2U ,(y)) ’
= U2T ,[(x,p-12" + x + y,_12¥ + y) mod 2¥]
= U27,[(x + ) mod 27

The terms x,,_12* and y,,_;2* drop out since they equal 0 modulo 2%,

To better understand this quantity, let us define z'as the integersumz =x + y,
z as z/ = zmod 2%, and z” as z" = U2T ,(z'). The value 2" is equal to x +,y. We
canl divide the analysis into four cases as illustrated in Figure 2.24;

1L —2¥ <z < —2%"1 Then we will have z/ = z +2*. Thisgives 0 < 7/ « —2w—1 ¢
2¥ =2%~1 Examiding Equation.2.7; we see that # is in the range such that
z"=27'. This is the case of negative overflow. We have added two negative
numbers x and y (that’s the only-way'we can have z < —2%¥~1) and obtained
a nonnegative result z”’ = x + y -+ 2%,

2. 2%l <z <{. Then we will again have 2/ = z 4 2% giving —2¥-14 2w
20l <y 2w, Examining Equation 2.7, we see that 2’ is in such a range that
2" =2z'— 2" and therefore 2/ = 2/ — 2W— + 2% — 2" = z_That is, our two’s-
complement sum z” equals the integer sum x + ¥

3. 0 <z <2¥"L. Then we will have 2’ = z, giving 0 < 2/ < 2%, and hence z” =
z' = z. Again, the two’s-complement sum z" equals the integer sum x + y.

4. 271 2z < 2% We will again havé 2 = z, giving 2%~ < 7' < 2%, But in this
range we have z” =z’ — 2%, giving z/ = x + y — 2, This is the case of positive
overflow. We have added two positive numbers x and y (that’s the only way
we can have z > 2¥~1) and obtained a negative result 2’ = x + y - 2, |
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x ¥y x+y X+ y Case
8 s —13 301
[1000] [1011] [10011] [0011]
-8 -8 -—1_6’ . 0 1
[1000] [1000] [16000] [0000]
' -8 5 3 evs3 2
[1000] [0101] [11101) [1101]3
_l 2 5 7 7 3
‘ [0010] [0101] [00111] [0111]
| : 5 5 10 —6 4
. [0101] fo101] (010101 [1010)
[
! figure 2.25 Two's-complement addition examples. The bit-level representation of |

the 4-bit two's-complemnent sum can be obtained by performing binary addition of the i
operands ang truncating the result to 4 bits.

i o
b As iltustrations of two’s-complement addition, Figure 2. 25 shows some exam-
* ples when w = 4. Each example is labeled by the case to which it corresponds in
E the derivation of Equation 2.13. Note that 2% = 16, and hence negative overflow
‘ yields a result 16 more than the integer sum, and positive overflow yields a result 16
f ' less. We include bit-level representations of the operands and the result. Observe
] that the result can be gbtained by perfprming hinary addition of the operandg and
g truncating the result to 4 bits.
Figure 2.26 illustrates two s—complement addition for word size w = 4. The
!} operands range between —8 and 7. When x + y < —8; two’s-complement addition
% has a negative overflow, causing the sum to be 1ncremented by 16. When -8 <
‘ x + y < 8, the addition yields x + y. When x + y > 8,.the, addition has a positive
overflow, causing the sum to be decremented by.16. Each of these three ranges
forms a sloping plane.in the figure. i
’ﬂ Equation 2.13 also lets us identify the cases where overflow has occurred:

PRINCIPLE: Detecting overflow in two’s-complement addition

i For x and y in the range TMin,, < x, y < TMax,,,let s = x + y. Then the compu-
! tation of s has had positive overflow if and only if%.> 0 and y > 0 but s < 0. The
E computation has had negative overflow if and only ifx <0and y <Obuts=0. ®

Figure 2.25 shows several illustrations of this principle for w = 4. The first
en FFY shows a case of negative overflow, where two negative numbers sum to a
positive one. The final entry shows a case of positive overflow, where two positive
numbers sum to a negative one. .
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Negative i
overilow

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a
negative overflow whenx 4 y < --8 and a positive overflow when x + y > 8.

DERIVATION: Detecting overflow of two’s-complement addition

Let us first do the analysis for positive overflow. If both x > 0 and y>0buts <0,
then clearly positive overflow has occurred. Conversely, positive overflow requires
(1) that x > 0 and y > 0 (otherwise, x + ¥ < TMax, ) and (2) that s <0 (from
Equation 2.13). A similar set of arguments holds for negative overflow. n

A e P r AR gt s e e s e pmennp v e e
Practicc Problem. 2uwdai: lytion.nade82) i T I ERT T
Fill in the following table in the style of Figure 2.25. Give the integer values of
the 5-bit arguments, the values of both their integer and two’s-complement sums,

the bit-level representation of the two’s-complement sum, and the case from the
derivation of Equation 2:13.

x y x+y x4y Case

[10100] [10001]
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x ¥ x+y x4y Case

[11000] [11000]

[10111).  (01000]

[00010] [00101]

[01100] [00100]

erte a functlon w1th the followmg prototype:

/* Determine whether arguments can be added without overflow */ ~
int tadd_ok(int x, int y); |

kS
This function should return 1 if arguments x and y can be added without
causing overflow.

Your coworker gets unpatlent w1th your analys1s of the overflow conditions for
two’s-complement addition and presents you with the following implementatiort
of tadd_ok:

/* Determine whether arguments can be, added without overflow */

/* WARNING: This code is buggy. */

int tadd_ok(int x, int y) {
int sum = x¥y; .
retirn (sum-—x == y) &k (sum-y == x);

{ e

You look at the code and langh. Explain why.

You are a551gned the task of wrltmg code for a function tsub_ok, with arguments
x and y, that will return 1 if computing x-y does not cause overflow. Having just
written the code for Problem 2.30, you write the following:

/* Determine whether arguments can be subtracted without overflow */
/* WARNING: This code is buggy. */ . '
int tsub_ok({int x, int y) {
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return tadd_ok(x, -y);

For what values of x and y will this function give incorrect results? Writing a
correct version of this function is left as an exercise (Problem 2.74).

U

2.3.3 Two's-Complement Negation

We can see that every number x in the range TMin,, < x < TMax,, has an additive
inverse under +),, which we denote - x as follows:

PRINCIPLE: Two’s-complement negation

For x in the range TMin, <x < TMax,, its two’s-complement negation -, x is
given by the formula

t
w

v { TMin,,, x=TMin,

—X, x > TMin, (2.15)

B
That is, for w-bit two’s-complement addition, TMin,, is its own additive in-
verse, while any other value x has'—x as its additive inverbe.
DERIVATION:. Two’s-complement negation

Observe that TMin,, + FMin, = —2%~* 4 —2%~1 = 2%, This would cause nega-
tive overflow, and hence TMin,, +, TMin,, = —2% + 2% = 0. For values of x such

thatx >"TMin,, the value —x can also be represented as a w-bit two’s-complement
number, and their sum will be —x + x = 0. |

et 'w'mﬁi»c

We can represent a bit pattern of length w=4 w1th a single hex digit. For a two’s-

complement interpretation of these digits, fill in the following table to determine
the additive inverses of the digits shown:

L
X 41.'

Hex Decimal Decimal Hex

Mo oo

What do yoh observe ‘about the'bit patterns generated by two’s-complement
and unsigned (Problem 2.28) negation?

a5
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Web Aside DATA:TNEG ﬁlthtevel representatlon of two's- complement negation .
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“ Fo % o a

¥
There are-several clever ways to determine the two’s- cof‘nplement negation.of a value represented
at the bit level. Thé foilowilg two’ tqcﬁmqueé*afp Béth liseful such"aé v?hen one encounters the value
oxffffffa when debugging a prograni, and tﬁqy lend 1n51ght into'the naiure of the tWo s—complert‘iérff}
representatlon 5
Oné technique for performing two s-comple;nent négation at the bit 1evel isto complenient the bits ¢
“and then increment, theresult. InC, we,,can state that for any mtegerxv,alue . %cof‘hputmg‘%he expressichs 4

i and ~x 41 will gwe identical results% . » . i
Here-are some eXampled With 2 4-bit word smé . fgoRR RS2 #
e bR N B ong n oty
3 i -3 Te ner(-%)
= ‘ 5 - T " R A PEERT LA | WA
J0101] 5 f1p010) -6 [tor] -5 - .y

- e PN P . " g % s
[o111] 7 “[1000) -8 foo ] -7 o s %
[1100] -4 « 10011] 3 [o100] . 4 - f. '
[0000] 0 Ta11] -1 {0000}-« 0 " .
[1000] -8 iy © 7 - {1000] G "o )

For our earlier example, we know lhat the complemenit of 0xf is 0x0 and the complement of Oxa
is 0x5, and'so Oxf11f £ £1a 1s_}he two’i-cofpleihent Teprésentation of5 Bhe an " L

A second way to perféim two ‘s-complement, negation of a numbervx 8 Qased o1y spllttmg the bit 4
vector into two pagts. Let k be the position of the rightmost 1, so the blt-]evel representatmn*of x has the
form [Xy_1, Xy—2» - - - » Xgaio 1, 0, . 0] (Thisis p0551b1e asJong*as x'*# 0.) Thendgatiofis‘thér written i
in binary form as [~xy_1, Ty F50 %‘1,,,1,40 +, 0} That is, wé complemapt“each bit to_ the lef,;, o&

bit position . , 4P 3 3 E
We illustrate this ldea w,1th_sorneﬁ,!gt(1 glgnumbgrg, gghere We hxghhyghrtpe ngiltmost pattem 1 0 %
in-italics: 5 A B, s 3, ¢
X . e —x" £ 3 “ ;
1o0] -4 [0foo] 4 wE e '
[000) —8  iMI000Rs TBoct . wa P T
[0101] 5 101} L5 ¥ Y S T dett 7 ]
o 7 (to07). =7 ceFoAma e e B g

e A e o e in Bl e R

2.3.4 Unsigned Multiplication

Integers x and y in the range 0 < x, y <2 — 1 can be represented as w- -bit un-
signed numbers, but their product x - y can range between 0 and (2% — 2=
22w _ gwtl 4 1. This could require as many as 2w bits to represent. Instead, un-
signed multiplication in C is defined to yield the w-bit value given by the low-order
w bits of the 2w-bit jnteger product. Let us denote this yalue as y *, y.

Truncatmg an unsigned number to w bits is equwa]eni 1o computmg its value
modulo 2%, giving the following:
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PRINCIPLE; Unsigned multiplication
Forxand y suchthat 0 < », y < UMax,,:

x*, y=(x-y)mod2¥ (2.16)

2.3.5 Two's-Complement Multiplication

+
Integers x and y in the range 2%~ <x, y <21 — 1 can be represented as w-bit
two’s-complement numbers, but their product.x - ¥ can range betwekn -2w-1.
¥l — 1y = —22w-2 L gw-ligng —pw-1c _pw-1_220-2 Thic conld require as
many as 2w bits to represent in two’s-complement:form’ Instead, signed multi-
plication in C generally is performed by truncating the 2w-bit product to w bits.
We denote this yalue as 5 *., ¥, Truncating a two’s-complement number to w bits

is equivalent to first computing its value modulo 2% and then converting from
unsigned to two’s complement, giving the following:

PRINCIPLE: Two’s-complement mitltiplication
For x and y sueh that T™Miny, <x, y < TMax,,:

x# y=U2T,((x - y) mod 2%) (217)
|

We claim that the bit-levél tépresentatiort of the product operation is identical
for both unsigned and two’s-complement multiplication, as stated by the following
principle:

PRINCIPLE: Bit-level equivalence of unsigned and two’s-complement multipli-
cation

Let ¥ and ¥ be bit vectors-of length w. Define integers x and y as the values repre-
sented by these bits in two’s-complement form: x = B2 Ty(X) and y = B2T (7).
Define nonnegative integers x* and y’ as the values represented by these bits in
unsigned form: x’ = B2U (¥} and y’ = B2U ,(5). Then

2B, (x *:.u y)'= U2Bw(x’ *:;, y’)
‘ [ |

As illustrations, Figure 2.27 shows the results of multiplying different 3-bit
numbers. For'each pair of bit-level operands, we perform both unsigned and
two’s-complement multiplication, yielding 6-bit products, and then truncate these
to 3 bits. The unsigned truncated product always equals x - y mod 8. The bit-
level representations of both truncated products are identical for both unsigned
and two’s-complement multiplication, even though the full 6-bit representations
differ.
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Mode x ¥y Ay Truncated x - ¥
Unsigned 5 [or] 3 [o1 15 [oouanl] 7 [111]
_ Two’s complement =3 [101] 3 [o11] -9 [110111] -1 f111] |
: Unsigned 4 [100] 7 [111] 28 [011100] 4 [100]
Two's complement  —4 [100] -1 [111] 4 [000100] —4 [100]
Unsigned 3 [oi1] 3 [o11] 9 -[001001): 1 [001]
Two’s complement 3 fo11] 3 [o011] 9 [001001] 1 [001] f

Figure 2.27 Three-bit unsigned and two’s-complement multiplication examples:
Although the bit-level representations of the full products may differ, those of the
truncated products are identical.

DERIVATION: Bit-level equivalence of unsigned and twb’s-complement multipli-
cation ! !

From Equation 2.6, we have x' = x + x,_12% and ¥’ =y + y,,_12*. Computing the
product of these values modulo 2% gives the following:

. i
e e e e b . el

' - y) mod 2% = [(x + xp_12") * (7 + Y—12*)]mod 2 (2.18)
=[x-y+ Gy + }’w——lx)zw + xw—lyw—lzzw] mod 2% i
= (x - y)mod 2¥

The terms with weight 2% and 22* drop out due to the modulus operator. By Equa-
tiog 2.17, we hayve x *,, y = UZT,{,((x . y) mod 2%). We can apply the operation
12U, to both sides to get

T2U (x *, y) = T2U ,(U2T,((x - y) mod 2¥)) = (x - y) mod 2*

Combining this result with Equations 2.16 and 2.18 shows that T2U ,(x *, y) =
(x'+ y) mod 2¥ = x’ #* y'. We can then apply U2B,, to both sides to get

+

2B, (T2U (x ., y)) = T2B,,(x #, ) = U2B,,(x' ¥, ¥)

[ ]
[
; O T P T e R T AT
' ‘Proplem 2:34. (solution paoe 1S3k iy T e @ E i

Fill in the following table showing the results of multiplying different 3-bit num-
' bers, in the style of Figure 2.27:

Mode x ¥ Xy Truncated x - y
] Unsigned e [00] e 107 [
; Two's complement . [100] [101] s :
5 y %
}. , Unsigned 010 — .. Q] : f

Two's complement ... [010] . [111)
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Mode X ¥ X-y Truncated x - y
Unsigned — 110 — . [110] :
Two’s complement . [110) _____  [110] .

You are given the assignment to develop code for a function tmult_ck that will
determine whether two arguments can be multiplied without causing overfiow.
Here is your solution:

/* Determine whether arguments can be multiplied without overflow */
int tmult_ok{int x, int y) {

int p = x*y;

/* Either x is zerc, or dividing p by x gives y */

return !x || p/x == y;

You test this code for a number of values of x and y, and it seems to work
properly. Your coworker challenges you, saying, “If I can’t use subtraction to
test whether addition has overflowed (see Problem 2.31), then how can you use
division to test whether multiplication has overflowed?”

Devise a mathematical justification of your approach, along the following
lines. First, argue that the case x = 0 is handled correctly. Otherwise, consider
w-bit numbers x (x #0), y, p, and 4, where p is the resuit of performing two’s-
complement multiplication on x and y, and ¢ is the result of dividing p by x.

1. Show that x - y, the integer product of x and y, can be written in the form
x-y=p+12¥ where ¢t # 0 if and only if the computation of p overflows.

2, Show that p can be written in the form p = x - g + r, where [r| < |x|.
3. Show thatg =y ifandonlyifr =t =0.

Problem:Zi8 66oliticn: pages; -"ﬁi S ¥ S M

For the case where data type int has 32 bits, devise a version of tmult_ok (Prob-
lem 2.35) that uses the 64-bit precision of data type int64_t, without using
division.

Cl

You are given the task of patching the vulnerability in the XDR code shown in
the aside on page 100 for the case where both data types int and size_t are 32
bits. You decide to eliminate the possibility of the multiplication overflowing by
computing the number of bytes to allocate using data type uint64_t. You replace
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Aside Security vulnerability in the XDR library .

In 2002, it was discovered that code supplied by Sun Microsystems to implement the XDR library, a
widely used facility for sharing data structures between programs, had a security vulnerability arising
from the fact that multiplication can overflow without any notice being given to the program.

Code similar to that containing the vulnerability is shown below:

1 /* Illustration of code,vulnerability similar to that found in

2 = Sun's XDR library. )

3 o/ '

4 void* copy_elements{void *ele_src{], int ele_cnt, size_t ele_size) {
5 VES

3 * Allocate buffer for ele_cnt objects, each of ele_size byteés
7 * and copy from locations designated by ele_src

8 */

9 void *result = malloc(ele_cnt * ele_size);

10 if (result == NULL)

11 /* malloc failed */

12 return NULL;

13 void #pext = result;

14 int i; *

15 for (i = 0; 1 < ele_cnt; i++) {

16 /* Copy object i t¢ destimation */

17 memcpy (next, ele_src[i], ele_size); .
18 /* Move pdinter to next memory region %/

19 next += ele_size;

20 } '

Fa return result; .

22}

The function copy_elements is designed to copy ele_cat data structures, each consisting of ele_
size bytes into a buffer allotated by the function on line 9. The number of bytes required is computed
as ele_cot * ele_siza. .

Imagine, however, that a malicious programmer calls this function with ele_cnt being 1,048,577
(2%° + 1) and ele_size being 4,096 (2!2) with the program compiled for 32 bits. Then the multiplication
on line 9 will overflow, causing only 4,096 bytes to be allocated, rather thian the 4,294,971,392 bytes
required to hold that much data. The loop starting at line 15 will attempt to copy all of those bytes,
overrunning the end of the allocated buffer, and therefore corrupting other data structures. This could
cause the program to crash or otherwise misbehave.

The Sun code was used by almost every operating system and.in such widely used programs as
Internet Explorer and the Kerberos authentication system. The Computer Emergency Response Team
(CERT), an organization run by the Carnegie Mellon Software Engineering Institute to track security
vulnerabilities and breaches, issued advisory “CA-2002-25,” and many companies rushed to patch their
code. Fortunately, there were no reported security.breaches caused by this vulnerability.

A similar vulnerability existed in many implementations of the libraty function calloc. These
have since been patched. Unfortunately, many-programmers call allocation functions, such as malloc;
using arithmetic expressions as arguments, without checking these expressions for overflow. Writing a
reliable version of calloc is left as an exercise (Problem 2.76).

iy
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the original call to malloc (line 9) as follows:

nint64_t asize =
ele_cnt * (uint64_t) ele_size;
void *result = malloc(asize); .

Recall that'the argument to malloc has typeisize_t.

A. Does your code provide any improvement over the original?

B: How would you change the code to eliminaté the vulnerability?’

i F 3 £

[

2.3.6 Multiplying by Constants

Historigally, the integer ‘multiply instruction ol many machines was fairly slow,
requiting 10 or more clock cycles, whereas other integer operations—such, as
Addition, subtraction, bit-level operations, and shifting—required only 1 -clock
cycle. Even on the Intel Core i7 Haswell we use as our reference machine, integer
multiply requires 3 clock cycles. As a consequence, ong important optimization
used by compilers is to attempt to replace multiplications by constant factors with
combinations of shift-and addition operations. We will first consider the case of
multiplying by a power of 2, and then we will generalize this to arbitrary constants.

PRINCIPLE: Multiplication by a powér of 2

Let x be the unsigned integer represented by bit' pattern [y_;, Xy - - -y Xl
Then for any k = 0, the' w ++4-bit unsigned- representation of x2* is given by
[(¥w-1) X2, .., %0, 0, .. ., 0], where k zeros have beert added torthe rightt N

I P
So, for example, 11 can be reprgsented for w = 4,3s,[1011]. Shifting this left
by k =2 yields the 6-bit vector [101.100], which encodes the unsigned number
11.4=44.

DERIVATION: Multiplication by a power of 2
This property can be derived using Equation 2.1:

w—1
BZU,,,H(wa_l,'xw_z, v Xp. 0, ..., 0D = Z x; 20k
=0

w-—1
= {Z x,-2£:| L2k
=0

= x2k
|

When shifting left by & for a fixed word size, the high-order & bits are discarded,
yielding

[xw—k—].’ xIka—Z! LRI | xo; Os ey 0]

101
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I but this is also the case when performing muitiplication on fixed-size words. We
can therefore see that shifting a value left is equivalent to performing unsigned
multiplication by a power of 2:

] PRINCIPLE: Unsigned multiplication by a power of 2

[ For C variables x and k with unsigned values x and k, such that 0 <k < w, the C
expression x << k yields the value x * 2%, n

Since the bit-level operation of fixed-size two’s-complement arithmetic is
equivalent to that for unsigned arithmetic, we can make a similar statement about
the relationship between left shifts and multiplication by a power of 2 for two’s-
complement arithmetic:

PRINCIPLE: Two's-complement multiplication by a power of 2

For C variables x and k with two’s-complement value x and unsigned value &, such
that 0 <k < w, the C expression x << k yields the value x *!, 2%, |

' Note that multiplying by a power of 2 can cause overflow with either unsigned
or two’s-complement arithmetic. Our result shows that even then we will get the
same effect by shifting. Returning to our earlier example, we shifted the 4-bit
pattern [1011] (numeric value 11) left by two positions to get [101100] (numeric
| value 44). Truncating this to 4 bits gives [1100] (numeric value 12 = 44 mod 16).

Given that integer mulitiplication is more costly than shifting and adding, many
C compilers try to remove many cases where an integer is being multiplied by a
constant with combinations of shifting, adding, and subtracting. For example, sup-
pose a program contains the expression x*14. Recognizing that 14 =23 422 + 21,
the compiler can rewrite the multiplication as (x<<3) + (x<<2) + (x<<1),replac-
ing ofte multiplication Wwith three shifts and two additions. The two computations
will yield the same result, regardless of whether x is unsigned or two’s comple-
ment, and even if the multiplication would cause an overfiow. Even better, the
compiler can also use the property 14 = 24 — 2! to rewrite the multiplication as
(x<<4) - (x<<1), requiring only two shifts and a subtraction.

N e

‘ the form (a<<k) + b, where k is either 0, 1, 2, or 3, and b is either 0 or some
;. program value. The compiler often uses this instruction to perform multiplications
by constant factors. For example, we can compute 3#a as (a<<1) + a.
Considering cases where b is either 0 or equal to a, and all possible values of k,
what multiples of a can be computed with a single LEA instruction? -

! Generalizing from our example, consider the task of generating code for
i the expression x * K, for some constant K. The compiler can express the binary
representation of X as an alternating sequence of zeros and ones: ‘
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[0...00Q...0...00--(1...1]

For example, 14 can be written as [(0. . . 0)(111)(0)]. Consider a run of ones from
bit position n down to bit position' m (n = m). (For the case of 14, we have n =3
and m = 1.) We can compute the effect of these bits on the product using either of
two different forms:

Form A: (x<<n} + (x<<(n — 1)) + .- + {x<sm)
Form B: (x<Z(n +1)) - (x<<m)

By adding together the results for each run, we are able to compute x * X with-
out any multiplications. Of course, the trade-off between using combinations of
shifting} adding, and subfractiny versiss a single multiplication instruction depends
on the relative speeds of these instructions, and these can be highly machine de-
pendent. Most compilers only perform this optimization when a small number of
shifts, adds, and subtractions suffice:

iq

How couId we mod1fy the expressmn for form B fer the case where bit position n
is the most significant bit?

For each of the fo]lowmg values of K ﬁnd ways to express x * K usmg only the
specified number of operations, where we ‘consider both additions and subtrac-
tions to have comparable cost. You may need to use some tricks beyond the simple
form A-and B ruies we have considered so far.

K Shifts  Add/Subs  Expression

»

6 2 1
il 1 i — ro
-6 2 1 —————
53 2 2 t

Practice Problemi ZATH 013

For a run of ones gtartmg at b1t iiosmon 3 down to blt posmon m (n > m) we saw
that we card generatd 1o forms of c6de, A and B. How should'the compiler decide
whith form'tor use? :

k1 E

2.3.7 Dividing by Powers of 2

Integer division on most machines is even slower than integer multiplication—
requiring 30 or more clock cycles. Dividing by a power 0f 2 can also be performed
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k >> k (binary) Decimal 12,340,/2%

0 0011000000110100. 12,340 12,340.0

1 0001100000011010 6,170 6,170.0

4 0000001100000041 ! 771.25

8 0000000000110000 48 48203125

Figure 2.28 Dividing unsigned numbers by powers of 2. The examples illustrate
how performing a logical right shift by k has the same effect as-dividing by 2¥ and then
rounding toward zero.

using shift operations, but.we use a right shift rather than-a left shift. The two
different right shifts—logical and arithmetic+—serve this purpose for unsigned and
two’s-complement numbers, respectively: "

Integer division always rounds toward zero. To .define this precisely, let.us
introduce some notation. For any real number g, define |a] to be the unique
integer @’ such that &’ <a <a’ + 1. As examples 13. 14j 3, 1-3. 14] —4, and
13] =3. Similarly, define [a] to be the unique integer @’ such thata' —1<a <a’.
As examples, [3714] = 4, [—3:14] = =3, dnd [37'= 3. For x =0 and y > 0, integer
division should yield [x/y], while forx <Oand y > 0, it should yield [x/y]. That
is, it should round down a positive result but round up a negative one.

The case for using shifts with unsigned arithmetic is straightforward, in part
because right shifting is guaranteed to be performed logically for unsigned values.

foae o}
PRINCIPLE: Unsigned divisionnby a power of 2

For C vdriables x and*k with unsigiéd values x and k, such that 0'< k< w, the C
expression x >> k yields the value |x/2¢]. |

As examples, Figure 2.28 shows the effects of performing logical right shifts
on a 16-bit representation of 12,340 to perform division by 1, 2, 16, and 256. The
zeros shifted in from the left are shown in italics. We also show the result we would
obtain if we did these divisions with real arithmetic. These examples show that the
result of shifting consistently rounds toward zero, as is the convention for integer:
division.

DERIVATION: Unsigned division by a power f 2,

Let x be the unsigned integer represented by-bit pattern [x,,_1, X2, . .- » X0}, and
let k be in the rangg 0 <k < w. ;Let x’ be ,the unsigned number with w — k-bit
representatlon [*w—1s Xw—2s - - - » Xi], and Iet x” be the unsxgned mgnber with k;blt
representation [x_1, . . ., Xg]. We can therefore see that x = 2%x’ + x”, and that
0 < x” < 2%, It therefore follows that |x/2¥| = x.

Performing a logical right shift of bit vector [x,,_1,, Xy 2.
the bit vector

xp] by & yields

c&,’

[0, ceey 0, Xop—1s X—=2s + + + xk]
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k >> k (binary) Decimal —12,340/2%

0 1100111111001100  —12340  —12,340.0

1 1110011111100110 —6,170 —6,170.0

4 1111110011111100 ~772 =771.25

8 11111111110011141 —49 —48.203123

—_—

Figure 2.29, Applying arithmetie right shift. The examples illustrate that arithmetic
right shift is similar to division by-a powew of 25 except that it rounds down rather than
toward zero.

This bit vector has numeric value x’, which we have seen is the value that would
result by computing the expression x >> k. |

The case for dividing by a power of 2 with two’s-complement arithmetic is
slightly more complex. First, th,el shifting should be perforpipd using an arithmetic
right shift, to ensure that negative valués remain negafive. Let us investigate what
value such a right shift would produce.

PRINCIPLE; 'Two’s—complement division by a power of 2, rounding down
=

Let C variables x and k have two’s-complement; value x and unsigned value
k, respectively, such_that 0,<.k‘< w. The C expression x >> k, when the shift is
performed arithmetically, yields the xalue {x/2*]. |

For x> 0, variable x has 0 as the mogt significant bit, and so the effect of an
arithmetic shift is the same as for a logical right shift. Thus, an arithmetic right shift
by & is the same as division by 2¥ for a nonnegative number. A% an example of a
negative number, Figure 2.29 shows the effect of 'a{pplfging afithmetic right shift to
élflh6,—bit representation of —12;340 for different shift amounts. For the case when
no rounding is required (k = 1), thé resylt will be x /2*. When rounding is required,
shifting causes the result to be rounded downward. For example, the shifting right
by four has the effect of rounding —7%71.25 down to —772. We will need to adjust
our strategy to handle division for negative values of x.

DERIVATION: Two’s-complement division by a power of 2, rounding down

Let x be the two’s-complement ir}ieger represented by bit pattern [x,,_;, x,,_o,
-» %o, and let k£ be in'the range 0 <k < w. Let x’ be the two’s-complement

r%umbe,r represented by the w — k bits [x,,_;, Xy-2, ..., %], and let x” be the
uhsigned number represented by the low-order k Bits [xg_1, . . ., xg]. By a similar
analysis as the unsigned case, we have x = 26’ + x* and 0 <x" < 2% giving x' =
(x/2%|. Furthermore, observe that shifting bit vector [x,,_1, X,_3, . .., xg] right
arithmetically by k yields the bit vector

(K1 -+ o s Xopts Xy 1, Xyys - - -, %]
which is the sign extension from w — £ bits to w bits of (%41, Xw_2s - . ., x;). Thus,

this shifted bit vector is the two’s-complement representation of |x/2F]. |
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k  Bias  —12,340 + bias (binary) >> k (binary) Decimal —12,340/2%
0 0 1100111111001100 1100111111001100  —12,340  —12,340.0

1 1 1100111111001101 1110011111100110 —6,170 —6,170.0

4 15 1100111111011011 1111110011111101 —771 —77L.25

8 255 1101000011001011 1111111111010000 —48 —48.203125

Figure 2.30 Dividing two’s-complement numbers by powers of 2. By adding a bias
before the right shift, the result is'roanded toward zero.

We can correct for the improper rounding that occurs when a negative number
is shifted right by “biasing™ the value before shifting.

PRINCIPLE: Two’s-complement division by a power of 2, rounding up

Let C variables x and k have two’s- complemgnt value x"and uns1gned value %,
respectively,such that0 < k < w. Thé Cexpress;on % (4 <<k - 1) >3k, when
the shiff is performed ar1thmet1ca11y, yields the value. [x/2%. |

Figure 2.30 demonstrates how adding the appropriate bias before performing
the arithmetic right shift causes thé result to be correctly rounded. In the third
column, we show the resuit of adding.the bias value to —12340, with the lower &
bits (those that will be shifted off to the right) shown in italics. We can see that
the bits to the left of these may or may not be incremented. For the casé where no
rounding is reguired (k=1), addmg the bias only affects bits that are shifted off.
For the cases where rounding is fequired, adding the bias causes the upper bits to
be mcremented so that the result will be rounded toward zero.

The blasmg techfnque exploﬂs the property that Mx/y]=(x +y—1)/y] for
integers x and y such that y > 0. As examples when x = —30 and y =4, we have
x+y—1=-27and [-30/4] = —7 = |-27/4]. When x = —32 and y = 4, we Have
x+y-1=-29and [-32/4]=—-8=|— 29/4]

1

DERIVATION: Two's-complement division by a power of 2, rounding up

To see that [x/y] = [(x + y — 1)/y], suppose that x = gy +r, where 0 <r < y,
giving (x +y —/fy =g+ (r +y—D/y,andso [(x +y— D/yl =g+ r £y -
1)/y]. The latter term will equal 0 when r =0 and 1 when r > 0. That is, by adding
a bias of y — 1to x and then founding the division dowhward, we will get ¢ when
v divides x and g + 1 otherwise.

Returning to the case where y = 2%, the C expression x + (1<K 1 yield§
the value x +,2% — 1. Shifting this right arithmetically by k therefore yields [x /2"1

1

These analyses show that for a two’s-complement machiné ‘using arithmetic
right shifts, the C expression

{x<0 7 x+(1<<k)-1 : %) >> k

will compute the value x/2% .
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Wnte a functlon d1v16 that returns the value x/16 for integer argument x. Your
function should not use division, modulus, multiplication, any conditionals (if or
7:), any comparison operators (e.g., <, >, or ==), or any loops. You may assume
that data type int is 32 bits long and uses a two’s-complement representation, and
that right shifts are performed arithmetically.

We now see that division by a power of 2 can be implemented using loglcal or
arithmetic rlght shifts. This is precisely the reason the two types of right shifis are
available on most machines. Unfortunately, this approach does not generalize to
division by arbitrary constants. Unlike multlphcatwn we cannot express division
by arbitrary constants X in terms of division by powers of 2.

In the followmg code we have ormtted the deﬁmtlons of constants M and N

#define M /* Mystery number 1 */

#define N /* Mystery number 2 =/

int arith(int x, int y) {
int result = 0;
result = x*M + y/N; /* M and N are mystery numbers. */
return result;

We compiled this code for particular values of M and N. The compiler opti-
mized the multiplication and division using the methods we haye discussed. The
following is a translation of the generated machine code back into C:

/% Tranglation of assembly code for arith */ ~
int optarith(int x, int y) {

int t =

X <<= §;

X —= t;

if (y <0 y+=17;

y »»>= 3; /* Arithmetic shift #*/

return x+y;

[
What are the values of M and N?

2.3.8 Final Thoughts on Integer Arithmetic

As we have seen, the “integer” arithmetic performed by computers is really
a form of modular arithmetic. The finite word size used to represent numbers
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limits the range of possible values, and the resulting operations can overflow.
We have glso seen that the two’s-complement repregentation provides a clever
way to represent, laoth negatwe and positjve values, while ysing the same bit- level
1mplementat10n§ as.are q’sed 1o perform unsugned arlthmctlc-—operatlons such as
addition, subtrapt:on multgpl1c,at10n and even dmsmn pave either identical or
very similar bit-level beﬁawors, whether the operands are in unsign&d or two’s-
complement form.
We have seen that some of the conventions in the C language can yield some
su rising results, and these can be sources of bugs that are hard to recognize or
derstand We'ltave especially seen that the unsigned data type, while conteptu-
ally stralghtforward can lead to behaviot¥ that eyen expenq,nced programmers do
not expect. We have also seen tHat this data type tan arise in unexpecfe}.l ways—for
example, when writing integer constants‘and when mvokmghbrary routines.

Assume data type intis32 b1ts long and uses a two s-complement representation
for 51gned values. Right shifts are performed arlthmetlcally for signed values and
logically for unsigned values. The variables are declared and initialized as follows:
foo(); /* Arbitrary value */
bar(); /# Arbitrary value */

int x
int ¥y

unsigned ux = %;
ungigned uy = y;

For each of the following C expressm‘ns either (1) argue that it is true “(evalu-
ates to 1) for all values of x and y;Or (2) give values of k and y for which it is false
(evaluates to0): '

A x>0 |1 (x-1<0)
(x&7) 1=7 1] (x<<29<0)
(x*x}>=0

x<0 1|l x<=0

x>0 (| x>0

X+y == uytux

QEEHYOQw

X*k~y + uy*ux == -X

2.4 Floating Point

T
. . . : : L
A floating-point representation encodes rational numbers of'the form V = x x 27.

It'is useful for performing computations involving very large numbers {|V| > 0),
1




