

Representing and Manipulating Information

2.1 information Storage 34
2.2 Integer Representations 59
2.3 Integer Arithmetic 84
2.4 Floating Point 108
2.5 Summary 126
Bibliographic Notes 127
Homework Problems 128
Solutions to Practice Problems 143

Modern computers store and process information represented as two-valued signals. These lowly binary digits, or bits, form the basis of the digital revolution. The familiar decimal, or base-10, representation has been in use for over 1,000 years, having been developed in India, improved by "Arab mathematicians in the 12 th century, and brought to the West in the 13 th century by the Italian mathematician Leonardo Pisano (ca. 1170 to ca. 1250), better known as Fibonacci. Using decimal notation is natural for 10 -fingered humans, but binary values work better when building machines that store and process information. Two-valued signals can readily be represented, stored, and transmitted-for example, as the presence or absence of a hole iñ a punched card, âs à high or low voltage on a wire, or as a magnetic domain oriented clockwise or counterclockwise. The electronic circuitry for storing áņ̉d performing computations on two-valued signalsis very simple and reliable, enabling manufacturers to integrate millions, or even billions, of such circuits on a single silicon chip.

In isolation, a single bit is not very ${ }^{*}$ uèful. When we group bits together and apply some interpretation that gives meaning to the different possible bit patterns, however, we can represent the elements of any finite set. For example, using a binary number system, we can use groups of bits to encode nonnegative numbers. By using a standard character code, we can encode the letters and symbols in a document. We cover both of these encodings in this chapter, as well as encodings to represent negative numbers and to approximate real numbers.

We consider the three most important representations of numbers. Unsigned encodings are based on traditional binary notation, representing numbers greater than or equal to 0 . Two's-complement encodings are the most common way to represent signed integers, that is, numbers that may be either positive or negative. Floating-point encodings are a base-2 version of scientific notation for representing real numbers. Computers implement arithmetic operations, such as addition and multiplication, with these different representations, similar to the corresponding operations on integers and real numbers.

Computer representationsruse"a limitedsnumber of bits to encode a number, and hence some operations can overflow when the results are too large to be represented. This can lead to some surprising results. For example, on most of today's computers (those using a 32-bit representation for data type int), computing the expression
$200 * 300 * 400 * 500$
yields $-884,901,888$. This runs counter to the properties of integer arithmeticcomputing the product of a set of positive numbers has yielded a negative result.

On the other hand, integer computer arithmetic satisfies many of the familiar properties of true integer arithmetic. For example, multiplication is associative and commutative, so that computing any of the following C expressions yields -884,901,888:

```
(500 * 400) * (300 * 200)
((500 * 400) * 300) * 200
((200 * 500) * 300) * 400
400 * (200* (300*500))
```

The computer might not generate the expected result, but at least it is consistent!

Floating-point arithmetic has altogether different mathematical properties. The product of a set of positive numbers will always be positive, although overflow will yield the special value $+\infty$. Floating-point arithmetic is not associative due to the finite precision of the representation. For example, the C expression ($3.14+1 \mathrm{e} 20$) -1 e 20 will evaluate to 0.0 on most machines, while $3.14+(1 \mathrm{e} 20-$ 1 e 20) will evaluate to 3.14 . The different mathematical properties of integer versus floating-point arithmetic stem from the difference in how they handle the finiteness of their representations-integer representations can encode a comparatively small range of values, but do so precisely, while floating-point representations can encode a wide range of values, but only approximately.

- By studying the actual number representations, we can understand the ranges of values that can be represented and the properties of the different arithmetic operations. This understanding is critical to writing programs that work correctly over the full range of numeric values and that are portable across different combinations of machine, operating system, and compiler. As we will describe, a number of computer security vulnerabilities have arisen due to some of the subtleties of computer arithmetic. Whereas in an earlier era program bugs would only inconvenience people when they happened to be triggered, there are now legions of hackers who try to exploit any bug they can find to obtain unauthorized access to other people's systems. This puts a higher level of obligation on programmers to understand how their programs work and how they can be made to behave in undesirable ways.

Computers use several different binary representations to encode numeric values. You will need to be fámiliar with these representations as you progress into machine-level programming in Chapter 3. We describe these encodings in this chapter and show you how to reason about.number representations.

We derive several ways to perform arithmetic operations by directly manipulating the bit-level representations of numbers. Understanding these techniques will be important for understanding the machine-level code.generated by compilers in their attempt to optimize the performance of arithmetic expression evaluation.

Our treatment of this material is based on a core set of mathematical principles. We start with the basic definitions of the encodings and then derive such properties as the range of representable numbers, their bit-level representations, and the properties of the arithmetic operations. We believe it is important for you to examine the material from this abstract viewpoint, because programmers need to have arclear understanding of how computer arithmetic relates to the more familiar integer and real arithmetic.

The $C++$ programming language is built upon C, using the exact same numeric representations and operations. Everything said in this chapter about C also holds for $\mathrm{C}++$. The Javalanguage definition, on the other hand, created a new set of standards for numeric representations and operations. Whereas the C standards are designed to allow a wide range of implementations, the Java standard is quite specific on the formats and encodings of data. We highlight the representations and operations supported by Java at several places in the chapter.
 In this chapter, we examine the fíndamental properties of how numbersand other forms of data are represented on a computerand the properties of the operations that computers perform of these datas
 derivations of important properties. ${ }^{2}$

To help you navibate this exposition , whe have structured the presentation to first stâte a property
 discussion. We recommend that you go back and forth between the statement of the principle and the examples and discussion until you have a sotid intuition for what iss being said and what is important

 The practice problems engage your in active learning, helping you put thoughts into action. With these as background, you wilf find it much easiêr to go back andefollow the derivations Be assured, as well
 good grasp of high sčthool ${ }^{\text {ªl }}$ gebrat
,

2.1 Information Storage

Rather than accessing individual bits in memory, most computers use blocks of 8 bits, or bytes, as the smallest addressable unit of memory. A-machine-level program views memory as a very large array of bytes, referred to as virtual memory. Every byte of memory is identified by a unique number, known as its address, and the set of all possible'addresses is known as the virtual addresss space. As indicated by its name, this virtual address space is just a conceptual image presented to the machine-level program. The actual implementation (presented in Chapter 9) uses a combination of dynamic random access memory (DRAM), flash memory, disk storage, special hardware, and operating system software to provide the program with what appears to be a monolithic byte array.

In subsequent chapters, we will cover how the compiler and run-time system partitions this memory space into more'manageable units.to store the different program objects, that is, program data, instructions, and control information. Various mechanisms are used to allocate and manage the storage for different parts of the program. This management is all performed within the virtual address space. For example, the value of a pointer in C -whether it-points tor an integer, a structure, or some other program object-is the virtual address of the first byte of some block of storage. The C compile'r also associates type informátion with each pointer, so that it can generate different machine-level code to access the value stored at the location designated by the pointer dependingion the type of that value. Although the C^{\prime} compiler maintainsthis type information, the actual machine-level program it generates has no information about data types. It simply treats each program object as ablock of bytes and the program itself as a sequence of bytes.

Aside The evolution of the C programming language

As was described in an aside on page 4, the C progrảmmịng language was fršt developed by Dennis Ritchiè of Bell Laboratories for use with the Unix operating system (also developed at'Bell Labs). At the time, most system programs, such as operating systems, had to be written largely in assembly code in order to have access to the low-level representations of different data"types: For example, it was not feasible to write a memory allocator, such as is provided by, the mâlloc libràry function, in other high-lểvel languages of that'era.

The original Bell Labs version of C was documented "in the first edition of the book by. Brian Kernighan ànd Dennis Ritchie [60]. Over time, Chas evolved through the efforts of several standardization groups. The first major revision of the original Bell Labs Cled to the ANSII C standard in 1989, by a group working under the auspices of the American National Standards Institute. ANSI C was a major departure from Bell Labs C, especially in the way functions are declared. ANSI C is described, in the second edition of Kernighan and Ritchiés book [616$]$, which is still considered one of the best references on C .
y ${ }^{4}$ The International Stapdaads Organization took over responsibility for standardizing the C language, adopting a version that was substantially the same as ANSIC in 1990 and hence is referred to "as "ISO G90."

This same organization sponsored an updating of the language in 1999 yielding "ISO C99." Among other things, this version introduced somê new dätà types and provided support for text strings requiring characters not found in the English lianguage. Á morerecent standard was approved in 2011, and hence iș named "ISO C11," again adding more data types and features Most of these recent additions have been baçkward compatible, meaning that programs written according to the earlier standard (at least

The GNU Compiler Collection (Gcc) can compile programsaccording to the conventions of seyeral different versions of the ${ }^{2}$ languages based on different comniand line options, as shown in Figure 2.1. For example, to compile program prog c according to SOO CLI , we copuld give the command line

The options -ansis and -std=cist have identitital effect-the code is compiled ácording to the ANSI

"As of the witing of this book; wheñ no pption is specified, the program will be compiled according
 C++, and others specific to GCC.-The GNU project is dêveloping a*version that combines ISO C11, plus other features, that cari bespecified with the command-line option -stdengul1. (Currently, this implementation is incomplete:) This will become the default version.

C version	Gcc command-line option
GNU 89	none, - std $=$ gnu 89
ANSI, ISO C90	-ansi, -std $=c 89$
ISO C99	- -std $=c 99$
ISO C11	- std $=c 11$

Figure 2.1 Specifying different versions of C to Gcc.
 struçtures, including arrays* Just like"a yariable; a pointer has two aspects: its value and its type. The value indicates the location of some objects whilesits type indicates what kind of object (e.g., integes or floating-point number) is stored at that location.

Truly understanding pointers requires examining their representation and implementation at the machine level. This will be a major focus in Chapter 3, culminating in an in-depth presentation in Section 3.10%.

2.1.1 Hexadecimal Notation

A single byte consists of 8 bits. In binary notation, its value rangès from 00000000_{2} to 11111111_{2}. When viewed as a decimal integer, its value ranges from 0_{10} to 255_{10}. Neither notation is very convenient for describing bit patterns. Binary notation is too verbose, while with decimal notation it is tedious to convert to and from bit patterns. Instead, we write bit patterns as base-16, or hexadecimal numbers. Hexadecimal (or simply "hex") uses digits ' 0 ' through ' 9 ' along with characters 'A' through ' F ' to represent 16 possible values. Figure 2.2 shows the decimal and binfary values associated with the 16 hexadecimal digits. Written in hexadecimal, the value of a single byte can range from 00_{16} to FF_{16}.

In C , numeric constants starting with 0 x or 0 X are interpreted as being in hexadecimal. The characters ' A ' through ' F ' may be written in either upper- or lowercase. For example, we could write the number FA1D37B ${ }_{16}$ as 0xFA1D37B, as $0 x f a 1 d 37 \mathrm{~b}$, or even mixing upper- and lowercase (e.g., 0xFa1D37b). We will use the C notation for representing hexadecimal values in this book.

A common task in working with machine-level programs is to manually convert between decimal, binary, and hexadecimal representations of bit patterns. $\dot{\text { Converting between binary and hexadecimal is straightforward, since it can be }}$ performed one hexadecimal digit at a time. Digits can be converted by referring to a chart such as that shown in Figure 2.2. One simple trick for doing the conversion in your head is to memorize the decimal equivalents of hex digits A, C, and F .

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
Hex digit	8	9	A	B	C	D	E	F
Decimal value	8	9	10	11	12	13	14	15
Binary value	1000	1001	1010	1011	1100	1101	1110	1111

Figure 2.2 Hexadecimal notation. Each hex digit encodes one of 16 values.

The hex values B, D, and E can be translated to decimal by computing their values relative to the first three.

For example, suppose you are given the number $0 \times 173 A 4 \mathrm{C}$. You can convert this to binary format by expanding each hexadecimal digit, as follows:

Hexadecimal	1	7	3	A	4	C
Binary	0001	0111	0011	1010	0100	1100

This gives the binary representation 000101110011101001001100.
Conversely, given a binary number 1111001010110110110011 , you convert it to hexadecimal by first 'splitting it into groups of 4 bits each. Nöte, however, that if the total number of bits is not a multiple of 4 , you'should make the leftmost group be the one with fewer than 4 bits, effectively padding the number with leading zeros. Then you translate each group of bits into the corresponding hexadecimal digit:

Binary	11	1100	1010	1101	1011	0011
Hexadecimal	3	C	A	D	B	3

Perform the following number conversions:
A. 0x39A7F8 to binary
B. binary 1100100101111011 to hexadecimal
C. OxD5E4C to binary ${ }_{\text {s }}$.
D. binary 1001101110011110110101 to hexadecimal

When a value x is a power of 2 , that is, $x=2^{n}$ for some honnegative integer \dot{n}, we can readily write x in hexadecimal form by remembering that the binary representation of x is simply 1 followed by n zeros. The hexadecimal digit 0 represents 4 binary zeros. So, for n written in the form $i+4 j$, where $0 \leq i \leq 3$, we can write x with a leading hex digit of $1(i=0), 2(i=1), 4(i=2)$, or 8 ($i=3$), followed by j hexadecimal os. As an example, for $x=2,048=2^{11}$, we have $n=11=3+4 \cdot 2$, giving hexadecimal representation 0×800.

Wractice Puoblem ze2 solution pange 433

Fill in the blank entries in the following table, giving the decimal and hexadecimal representations of different powers of 2:

n	2^{n} (decimal)	2^{n} (hexadecimal)
9	512	0x200
19	$\overline{16,384}$	\because
		0×10000
17		-
	32	-
		0x80

Converting between decimal and hexadecimal representations requires using multiplication or division to handle the general case. To convert a decimal number x to hexadecimal, we can repeatedly divide x by 16 , giving a quotient q and a remainder r, such that $x=q \sim 16+r_{s}$. We then use the hexadecimal digit representing r as the least significant digit and generate the remaining digits by repeating the process on q. As an example, consider the conversion of decimal 314,156:

$$
\begin{align*}
314,156 & =19,634 \cdot 16^{2}+12 \tag{C}\\
19,634 & =1,227 \cdot 16+2 \tag{2}\\
1,227 & =76 \cdot 16+11 \tag{B}\\
76 & =4 \cdot 16+12 \tag{C}\\
4 & =0 \cdot 16+4 \tag{4}
\end{align*}
$$

From this we can read off the hexadecimal representation as $0 \times 4 \mathrm{CB} 2 \mathrm{C}$.
Conversely, to convert a hexadecimal number to decimal, we can multiply each of the hexadecimal digits by the appropriate power of 16 . For example, given the number $0 \times 7 \mathrm{AF}$, we compute its decimal equivalent as $7 \cdot 16^{2}+10 \cdot 16+15=$ $7 \cdot 256+10 \cdot 16+15=1,792+160+15=1,967$.

Dractice Problem 2.3 (solution page 144)

A. single byte can, be represented by, 2 hexadecimal digits. Fill in the missing entries in the following table, giving the decimal, binary, and hexadecimal values of different byte patterns:

Decimal	Binary	Hexadecimal
${ }_{0}^{0}$	00000000	0×00
167	--	\bigcirc
62	-	
188		
	00110111	
	10001000	
	11110011	

 "Fof converting larger valueses bểtween decimal and hexadêcimal, it is best to "letac computer or calculatyor* * do the wơrks There are numerous tools that can do this. One simple way" is to ${ }^{*}$ usse any of the standard "

Decimal	Binary	Hexadecimal
	0	0×52
\square	-	$0 \times A C$
-		$0 \times E 7$

RFGCLCE Problem 24 (solution pade 44)

Without converting the numbers to decimal or binary, try to solve the following arithmetic problems, giving the answers in hexadecimal. Hint: Just modify the methods you use for performing decimal addition and subtraction to use bąse $1{ }^{\prime \prime}{ }^{\circ}$.
A. $0 \times 503 c+0 \times 8=$ \qquad
B. $0 \times 503 c-0 \times 40=$ \qquad
C. $0 \times 503 c+64=$
D. $0 \times 50 e a-0 \times 503 c=$

2.1.2 Data Sizes

Every computer has a word size, indicating the nominal ŝize of pointer data. Since a virtual address is encoded by such a word, the most important system parameter determined by the word size is the maximum size of the virtual address space. That is, for a machine with a w-bit word size, the virtual addresses can range from 0 to $2^{w}-1$, giving the program access to at most 2^{w} bytes.

In recent years, there has been a widespread shift from machines with 32bit word sizes to those with word sizes of 64 bits. This occurred first for high-end machines designed for large-scale scientific and database applications, followed by desktop and laptop machines, and most recently for the processors found in smartphones. A 32-bit word size limits the virtual address space to 4 gigabytes (writtèn 4 GB), that is, just over 4×10^{9} bytes. Scaling up to a 64 bit word size leads to a'virtual address space of 16 exabytes, or around 1.84×10^{19} bytes.

Most 64-bit machines can also run programs compiled for use on 32-bit machines, a form of backward compatibility. So, for example, when a program prog. c is compiled with the directive
linux> gcc -m32 prog.c
then this program will run correctly on either a 32-bit or a 64-bit machine. On the other hand, a program compiled with the directive
linux> gcc -m64 prog.c
will only run on a 64 -bit machine. We will therefore refer to programs as being either " 32 -bit programs" or " 64 -bit programs," since the distinction lies in how a program is compiled, rather than the type of machine on which it runs.

Computers and compilers support multiple data formats using different ways to encode data, such as integers and floating point, as well as different lengths. For example, many machines have instructions for manipulating single bytes, as well as integers represented as 2-, 4-, and 8-byte quantities. They also support floating-point numbers represented as 4- and 8-byte quantities.

The C language supports multiple data formats for both integer and floatingpoint data. Figure 2.3 shows the number of bytes typically allocated for different C data types. (We discuss the relation between what is guaranteed by the C standard versus what is typical in Section'2.2.) The exact numbers of bytes for some data types depends on how the program is compiled. W' show sizes for typical 32-bit and 64 -bit prográms. Intèger data can be either sighed, able to represent negative', zero, and positive values, or unsigned, only allowing nonnegative values. Data type char represents a single byte. Although the name char derives from the fact that it is used to store a single character in a text string, it can also be used to store integer values. Data types short, int, and long are intended to provide a range of

	C declaration			Bytes	
	Signed	Unsigned		32-bit	
[signed]	char	unsigned char		1	
short	unsigned short		2	1	
int	unsigned		4	4	
long	unsigned long		4	8	
int32_t	uint32_t		4	4	
int64_t	uint64_t		8	8	
char'*			4	8	
float		4	4		
double			8	8	

Figure 2.3 Typical sizes (in bytes) of basic C data types. The number of bytes allocated varies with how the program is compiled. This chart shows the values typical of 32-bit, and 64-bit programs.

sizes. Even when compiled for 64-bit systems, data type int is usually just 4 bytes. Data type long commonly has 4 bytes in 32-bit programs and 8 bytes in 64 -bit programs.

To avoid the vagaries of relying on "typical" sizes and different compiler settings, ISO C99 introduced a class of data types where the data sizes are fixed regardless of compiler and machine settings. Among these are data types int32_t and int64_t, having exactly 4 and 8 bytes, respectively. Using fixed-size integer types is the best way for programmers to have close control over data representations.

Most of the data types encode signed values, unless prefixed by the keyword unsigned or using the specific unsigned declaration for fixed-size data types. The exception to this is data type char. Although most compilers and machines treat these as signed data, the Cstandard does not guarantee this. Instead, as indicated by the square brackets, the programmer should use the declaration signed char to guarantee a 1'byte signed value. In many contexts, however, the program's behavior is insensitive to whether data type char is signed or unsigned.

The C language allows a variety of ways to order the keywords and to include or omit optional keywords. As examples; all of the following declarations have identical meaning:

```
unsigned long
unsigned long int
long unsigned
long unsigned int
```

We will consistently use the forms found in Figure 2.3.
Figure 2.3 also shows that a pointer (e.g., a variable declared as being of type char *) uses the full word size of the program. Most machines also support two different floating-point formats: single precision, declared in C as float, and double precision, declared in C as double. These formats use 4 and 8 bytes, respectively.

Programmers should strive to make their programs portable actoss different machines and compilers. One aspect of portability is to make the-program insensitive to the exact sizes of the different data types. The C standards set lower bounds
on the numeric ranges of the different data types, as will be covered later, but there are no upper bounds (except with the fixed-size types). With 32-bit machines and 32-bit programs being the dominant combination from around 1980 until around 2010, many programs have been written assuming the allocations listed for 32bit programs in Figure 2.3. With the transition to 64 -bit machines, many hidden word size dependencies have arisen as bugs in migrating these programs to new machines. For example, many programmers historically assumed that an object declared as type int could be used to store a pointer. This works fine for most 32 -bit programs, but it leads to problems for 64 -bit programs.

2.1.3 Addressing'and Byte Ordering

For program objects that span multiple bytes, we must establish two conventions: what the address of the object will be, and how we will órder the bytes in memory. In virtually all machines, a multi-byte object is stored as a contiguous sequence of bytes, with the address of the object given by the smallest address of the bytes used. For example, suppose a variable x of type int has address 0×100; that is, the value of the address expression $\& x$ is 0×100. Then (assuming data type int has a 32-bit representation) the 4 bytes of x would be stored in memory locations 0×100, $0 \times 101,0 \times 102$, and 0×103.

For ordering the bytes representing an object, there are two common conventions. Consider a w-bit integer having a bit representation $\left[x_{w-1}, x_{w-2}, \ldots, x_{1}, x_{0}\right]$, where x_{w-1} is the most significant bit and x_{0} is the least. Assuming w is a multiple of 8 , these bits can be grouped as bytes, with the most significant byte having bits $\left[x_{w-1}, x_{w-2}, \ldots, x_{w-8}\right]$, the least significant byte having bits $\left[x_{7}, x_{6}, \ldots, x_{0}\right]$, and the other bytes having bits from the middle. Some machines choose to store the object in memory ordered from least significant byte to most, while other machines store them from most to least. The former convention-where the least significant byte comes first-isreferred to as littleiendian. The latter convention-where the most significant byte comes first-is'referred to as big endian:

Suppose the variable x of type int and at address 0×100 has a hexadecimal value of 0×01234567. The ordering of the bytes within the address range 0×100 through 0×103 depends on the type of machine:

Little endian

Note that in the word 0×01234567 the high-order byte has hexadecimal value 0×01, while the low-order byte has value 0×67.

Most Intel-compatible machines operate exclusively in little-endian mode. On the other hand, most machines from IBM and Oracle (arising from their acquisi-
"Here is fow Jonathan Swift, writing in 1726 , described the history of the controversy between big and little endians:
. . . Lilliput and Blefuscu . . . have, as I was going to tell you, been engaged in a most obstinate war
** for six*and-thirty moons.past. It began upon the following occasion. It is allowed on all hands, that the primitive way of breaking eggs, before we eat them, was upon the larger end; but his present majesty's grandfather, while he was a boy, going to eat an egg, and breaking,it according to the "rancient practice, happened to"cut one of his fingers. Whereupon the emperor his father pûblished an edict, commanding all his subjects, upon great penalties, to break the smaller end of their eggs. The people so highly resented this law, that our histories tell us, there have been six rebellions raised on that account; wherein one emperor lost his life, and another his crown. These civil commotions were constantly fomented by the monarchs of Blefuscu; and when they were quelled, the exiles always fled for refuge to that empire. It is computed that eleven thousand persons have at several times suffered death, rather than submit to break their eggs at the smaller end. Many hundred large volumes have been published upon this controversy: but the books of thé Big-endians have been long forbidden, and the whole party rendered incapable by law of holding employments.
(Jonathan Swift. Gulliver's Travels, Benjamin Motte, 1726 .)
In his day, Swift wàs satirizing the continued conflicts between England (Lilliput) and France (Blefuscu). Danny Cohen, an early pioneer in networking protoçols, first applied these terms to refer to byte ordering [24], and the terminology has been,widely adopted.
tion of Sun Microsystems in 2010) operate in big-endian mode. Note that we said "most." The conventions do not split precisely along corporate boundaries. For example, both IBM and Oracle manufacture machines that use Intel-compatible processors and hence are little endian. Many recent microprocessor chips are bi-endian, meaning that they can be configured to operate as either little- or big-endian machines. In practice, however, byte ordering becomes fixed once a particular operating system is chosen. For example, ARM microprocessors, used in many cell phones, have hardware that can operate in either little- or big-endian mode, but the two most common operating systems for these chips-Android (from Google) and IOS (from Apple)-operate only in little-endian mode.

People get surprisingly emotional about which byte ordering is the proper one. In fact, the terms "little endian" and "big endian" come from the book Gulliver's Travels by Jonathan Swift, where two warring factions could not agree as to how a soft-boiled egg should be opened-by the little end or by the big. Just like the egg issue, there is no technological reason to choose one byte ordering convention over the other, and hence the arguments degenerate into bickering about sociopolitical issues. As long as one of the conventions is selected and adhered to consistently, the choice is arbitrary.

For most application programmers, the byte orderings used by their machines are totally invisible; programs compiled for either class of machine give identical results. At times, however, byte ordering becomes an issue. The first is when
binary data are communicated over a network between different machines. A common problem is for data produced by a little-endian machine to be sent to a big-endian machine, or vice versa, leading to the bytes within the words being in reverse order for the receiving program. To avoid such problems, code written for networking applications must follow established conventions for byte ordering to make sure the sending machine converts its internal representation to the network standard, while the receiving machine converts the network standard'to its internal representation. We will see examples of these conversions in Chapter 11.

t.

A second case where byte ordering becomes important is when looking at the byte sequences representing integer data. This occurs often when inspecting machine-level programs. As an example, the following line occurs in a, file that gives a text representation of the machine-level code for an Intel x86-64 processor:

$$
\text { 4004d3: } 010543 \text { Ob } 2000 \text { add \%eax,0x200b43(\%rip) }
$$

This line was generated by a disassembler, a tool thatedetermines the instruction sequence represented by an executable program file. We will learn more about disassemblers and how to interpret lines such as this in Chapter 3. For now, we simply note that this line states that the hexadecimal byte sequence 010543 Ob 2000 is the byte-level representation of an instruction that adds a word of data to the value stored at an address computed by adding $0 \times 200 \mathrm{~b} 43$ to the current value of the program counter, the address of the next instruction to be executed. If we take the final 4 bytes of the sequence 430 bb 2000 and write them in reverse order, we have 00200 b 43 . Dropping the leading 0 , we have the value $0 \times 200 \mathrm{~b} 43$, the numeric value written on the right. Having bytes appear in reverse order is a common occurrence when reading machine-level program representations generated for little-endian machines such as this one. The natural way to write a byte sequence is to have the lowest-numbered byte on the left and the highest on the right, but this is contrary to the normal way of writing numbers with the most significant digit on the left and the least on the right.

A third case where byte ordering becomes visible is when programs are written that circumvent the normal type system. In the C language, this can.be done using a cast or a union to allow an object to be referenced according to a different data type from which it was created. Such'coding'tricks are strongly discouraged for most application programming, but they can be quite úseful and even necessary forsystem-level programming.

Figure 2.4 shows C code that uses casting to access and print the byte representations of different program objects. We use typedef to define data type byte_pointer as a pointer to an object of type unsigned char. Such a byte pointer references a sequence of bytes where each byte is considered to be a nonnegative integer. The first routine show bytes is given the address of a sequence of bytes, indicated by a byte pointer, and a byte count. The byte count is specified as having data type size_t, the preferred data type for expressing the sizes of data structures. It prints the individual,bytes in hexadecimal. The C formatting directive $\% .2 \mathrm{x}$ indicates that an integer should be printed in hexadecimal with at least 2 digits.

```
#include <stdio.h>
typedef unsigned char *byte_pointer;
void show_bytes(byte_pointer start, size_t len) {
    int i;
    for (i = 0; i < len; i++)
        printf(" %.2x", start[i]);
    printf("\n");
}
void show_int(int x), {
    show_bytes((byte_pointer) &x, sizeof(int));
}
void show_float(float x) {
        show_bytes((byte_pointer) &x, sizeof(float));
}
void show_pointer(void *x) {
        show_bytes((byte_pointer) &x, sizeof(void *));
}
```

Figure 2.4 Code to print the byte representation of program objects. This code uses casting to circumvent the type system. Similar functions are easily defined for other data types.

Procedures show_int, show_float, and show_pointer demonstrate how to use procedure show_bytes to print the byte representations of C'program objects of type int, float, and void ${ }^{*}$, respectively. Observe that they simply pass show_ bytes a pointer \&x to their argument x, casting the pointer to be of type unsigned char *. This cast indicates to the compiler that the program shoutd consider the pointer to be to a sequence of bytes rather than to an object of the original data type. This pointer will then be to the lowest byte address occupied by the object.

These procedures use țhe C sizzeof operator tọ determine the number of bytes used by the object. In general, the expression sizeof (T) returns the number of bytes required to store an object of type T. Using sizeof rather than a fixed value is one step toward writing code that is portable across different machine,types.

We ran the code shown in Figure 2.5 on seyeral different machines, giving the results shown in Figure 2.6. The following maçhines were used:
Linux 32^{\prime}, Intel IA ${ }^{\circ} 32$ processor running Linux.
Windọws Intel IA32 processor riunning Windows. -1
Sun Sun Microsystems SPARC processor running Solaris. (These machines are now produced by Oracle.)
Linux 64 Intel x86-64 processor running Linux.

```
void test_show_bytes(int val) {
    int ival = val;
    float fval = (float) ival;
    int *pval = &ival;
    show_int(ival);
    show_float(fval);
    show_pointer(pval);
}
```

code/data/show-bytes.c
Figure 2.5 Byte representation examples. This code prints the byte representations of sample data objects.

Machine	Value	Type	Bytes (hex)
Linux 32	12,345	iņt	39300000
Windows	12,345	int	39300000
Sun	12,345	.int	00003039
Linux 64	12,345	int	39300000
Linux 32	12,345.0	float	00 e4 4046
Windows	12,345.0,	float	* 00 e4.40 46
Sun	12,345.0	float	$4640{ }^{\circ} \mathrm{e} 00$
Linux 64	12,345.0	float	00 e4 4046
Linux 32	\&ival	int *	e4 f9 ff bf
Winḑows	\&ival	int*	,b4 cc 2200
Sun	\&ival	int.*.	ef ff fa 0 c
Liņux 64	\&ival	int, *	'b8 11 e5 ff ff 7f 0000

Figure 2.6 Byte representationṣ of different data values. Results for int and float are identical, except for byte ordering. Pointer values are machine dependent.

Our argument 12,345 has hexadecimal representation 0×00003039. For the int data, we get identical results for all machines, except for the byte ordering. In particular, wê'can see that the least significant byte value of 0×39 is'printed first for Linux 32, Windows, an̉d Linux 64, indicating little-endian machines, and last for Sun, indicating a big-endian machine. Similarly, the bytes of the float data are identical, except for the byte ordering. On the other hand, the pointer values are completely different. The different machine/operating system configurations use different conventions for storage allocation. One feature to note is that the Linux 32, Windows, and Sun mâchines use 4-byte addresses, while the Linux 64 machine uses 8 -byte addresses.

New to C? Naming data types ${ }^{2}$ with typedef
The typedef declaration in C provides a way of giving a name to a data type. This can be a great help in improving code readability, since deeply nested type declarations can be difficult to decipher.

The syntax for typedef is exactly like that of declaring a variable, except that it uses a type name rather than a variable name. Thus, the declaration of byte_pointer in Figure 2.4 has the same form as the declaration of a variable of type unsigned char.*.

For example, the declaration
typedef int *int_pointer;
int_pointer ip;
defines type int_pointer to be a pointer to an int, and declares a variable ip of this type. Alternatively, we could declare this variable directly as
int *ip; * * *

New to C? Formatted printing with printf

The printf"function (along with its cousins féprintf and sprintf) provides a way to print information with considerable control ${ }^{\circ}$ over the formatting details. The first argument is a format string, while any remaining arguments are values to be printed. Within the format string, each character sequence starting with '\%' indicates how to format the next argument. Typical examples include \%d to print a decimal integer, \%f to print a floating-point number, and $\%$ c to print a character having the character code given by the argument.

Specifying the formatting of fixed-size data types, such as int_32t, is a*bit morre involved, aš is described in the aside on page 67.

Observe that although the floating-point and the integer data both encode the numeric value 12,345 , they have very different byte patterns: 0×00003039 for the integer and $0 x 4640 \mathrm{E} 400$ for floating point. In general, these two formats use different encoding schemes. If we expand these hexadecimal patterns into binary form and shift them appropriately, we find a sequence of 13 matching bits, indicated by a sequence of asterisks, as follows:

This is not coincidental. We will return to this example when we study floatingpoint formats.
 be discussed in detail in Section 3.8. We see "that this function has an "argument"start of type ${ }^{*}$ byte
 start [id"on line 8. Itr C, "we"can"dereferencé a pointer with arraynotation, and we "can reference"array elements with pointer notation. In this example; the reference start [i] indicates that we want to read

New to C? "Pointer creation año deereferenting
In lines 13,17 , and 21 of Figure 2.4 we see uses of two operations that give C (and therefore $\mathbb{C}_{t_{*}^{*}+}$) its distinctive character. The. Caddress of" operator " $\varepsilon^{\text {" }}$ creates a pointer." Onf all three lines, the expression \&x"creates a pointer to the location holding thè object indicated by variable x. The type"ôf this pointer depends on the type of x,"and hence these three pointers "are of type "int *, float *, and void"**", respectively* (Data type void $*$ is a speciall kind of pointer with no associated type information.)
 indicates that whatevèr type the pointer \&x had before, the program will now reference a pointer to. data of type unsigned chars. The casts shown here do nof change the actual pointer; theys simply direct the compiler to refer to the datå" bęing pointed to accorsding to the new data type.

You can display a table showing the ASCIF character code by executing the command man ascivin

Practice Problem 2 ; (solution pager 44)
 Consider the following three"calls to show_bytes:

```
int val }=0\times87654321
byte_pointer valp = (byte_pointeř) &val;
show_bytes(valp, 1); /* A. */
show_bytes(valp, 2); /* B. */
show_bytes(valp, 3); /* C. */
```

Indicate the values that will be printed by each call on a little-endian machine and on a big-endian machine:
A. Little endian: \qquad Big endian: \qquad
B. Little endian: \qquad Big endian: \qquad
C. Little endian: \qquad Big endian:

Practice Probien 2.6 (solition page 145)

Using show_int and show_float, we determine that the integer 3510593 has hexadecimal representation 0×00359141, while the floating-point number 3510593.0 has hexadecimal representation 0x4A564504.
A. Write the binary representations of these two hexadecimal values.
B. Shift these two strings relative to one another to maximize the number of matching bits. How many bits match?
C. What parts of the strings do not match?

2.1.4 Representing Strings

A string in \mathcal{C} is encoded by an array of characters terminated by the null (having value 0) character. Each character is represented by some standard encoding, with the most common being the ASCII character code. Thus, if we run our routine show_bytes with arguments "12345" and 6 (to include the terminating character), we get the result 313233343500 . Observe that the ASCII code for decimal digit x happens to be $0 x 3 x$, and that the terminating byte has the hex representation 0×00. This same result would be obtained on any system using ASCII as its character code, independent of the byte ordering and word size conventions. As a consequence, text data are more platform independent than binary data.

What would be printed as a result of the following call to show_bytes?

```
const char *s = "abcdef";
show_bytes((byte_pointer) s, strlen(s));
```

Note that letters ' a ''through ' z ' have ASCII codes 0×61 through 0×7 A.

2.1.5 Representing Code

Consider the following C function:

```
int sum(int x, int y) {
    returin x + y;
}
```

When compiled on our șample machines, we generate machine code having the following byte representations:

Linux $32 \quad 5589$ e5 8b $450 c 034508 \mathrm{c} 9 \mathrm{c} 3$
Windows 5589 e5, $8 \mathrm{~b} 45^{2} 0 \mathrm{c} 0345$ Q8 5d c3

Linux $64 \quad 554889$ e5 897 dfc 8975 f 80345 fc c9 c3

Asidê The Uniĉode standard for text encoding

 much in the way of spêcial characters, such as the French (çs. It is wholly unsuited for encoding documents in languages such as Greek, Russian ${ }^{2}$ and Chineses Over the years, sa variety of method
 mosst comprehensive" and widely"acceptedstandard for encoding text. The currènt-Unicőde standard
 the ancient languages of Egypt and Babbyfon", To thềr credit, the Upico dé Tecchnical Compmittee rejected a proposal to incluyde"a standard" writing for Klingon a fictional civilization from the television seriés Star Trek.:
 tion of characters. This wơld seem to require every string of text to consist of thy wes, per character. However, alternative codings are postible where common charactèrs require.just 1 of 2 : bytes, while $\%$ less common ones require more. Iñ pärticulary the te=8 teprestentation encodes each character as à sequence of bytes, such that the standard ASCII characters.use the sâme single-byte encodings as theyo have in ASCII, implying that all ASCII byte sequences have the same mêaning in UTF-8 as they do in 'ASCII.'
 are also available for C to support Unicởde. .

Here we find that the instruction codings are different. Different machine types use different and incompatible instructions and encodings. Even identical processors running different operating systems have differences in their coding conventions and hence are not binary compatible. Binary code is seldom portable across different combinations of machine and operating system.

A fundamental concept of computer systems is that a program, from the perspective of the machine, is simply"a sequence of bytes. The machine has no information about the original source program, except perhaps some auxiliary tables maintained to aid in debugging. We will see this more clearly when we study machine-level programming in Chapter 3.

2.1.6 Introduction to Boolean Algebra

Since binary values are at the core of how computers encode, store, and manipulate information, a rich body of mathematical knowledge has evolved around the study of the values 0 and 1. This started with the work of George Boole (18151864) around 1850 and thus is known as Boolean algebra. Boole observed that by encoding logic values TRUE and false as binary values 1 and 0 , he could formulate an algebra that captures the basic principles of logical reasoning.

The simplest Boolean algebra is defined over the two-element set $\{0,1\}$. Figure 2.7 defines several operations in this algebra. Our symbols for representing these operations are chosen to match those used by the 'C' bit-level operations,

\sim		\&	0	1
0	1	0	0	0
1	0	1		1

I	0	1	\sim	0	1
0	0	1	0	0	1
1	1	1	1		

Figure 2.7 Operations of Boolean algebra. Binary values I and 0 encode logic values TRUE and FALSE, while operations $\sim, \&, 1$, and ^ encode logical operations NOT, AND, OR, and EXCLUSIVE-OR, respectively.
as will be discussed later. The Boolean operation ~ corresponds to the logical operation NOT, denoted by the symbol \neg. That is, we say that $\neg P$ is true when P is not true, and vice versa. Correspondingly, $\sim p$ equals 1 when p equals 0 , and vice versa. Boolean operation \& corresponds to the logical operation AND, denoted by the symbol \wedge. We say that $P \wedge Q$ holds when both P is true and Q is true. Correspondingly, $p \& q$ equals 1 only when $p=1$ and $q=1$. Boolean operation \mid corresponds to the logical operation or, denoted by the symbol \vee. We say that $P \vee Q$ holds when either P is true or Q is true. Correspondingly, $p \mid q$ equals 1 when either $p=1$ or $q=1$. Boolean operation ~ corresponds to the logical operation EXCLUSIVE-OR, denoted by the symbol \oplus. We say that $P \oplus Q$ holds when either P is true or Q is true, but not both. Correspondingly, $p^{\wedge} q$ equals 1 when either $p=1$ and $q=0$, or $p=0$ and $q=1$.

Claude Shannon (1916-2001), who later founded the field of information theory, first made the connection between Boolean algebra and digital logic. In his 1937 master's thesis, he showed that Boolean algebra could be applied to the design and analysis of networks of electromechanical relays. Although computer technology has advanced considerably since, Boolean algebra still plays a central role in the design and analysis of digital systems.

We can extend the four Boolean operations to also operate on bit vectors, strings of zeros and ones of some fixed length w. We define the operations over bit vectors according to their applications to the matching elements of the arguments. Let a and b denote the bit vectors $\left[a_{w-1}, a_{w-2}, \ldots, a_{0}\right.$] and $\left[b_{w-1}, b_{w-2}, \ldots, b_{0}\right.$], respectively. We define $a \& b$ to also be a bit vector of length w, where the i th element equals $a_{i} \& b_{i}$, for $0 \leq i<w$. The operations $\mathrm{I},{ }^{\wedge}$, and \sim are extended to bit vectors in a similar fashion.

As examples, consider the case where $w=4$, and with arguments $a=$ [0110] and $b=[1100]$. Then the four operations $a \& b, a \mid b, a^{\wedge} b$, and $\sim b$ yield
$\begin{array}{r}0110 \\ \& \quad 1100 \\ \hline .0100\end{array}$
$\begin{array}{r}0110 \\ \text { I } 1100 \\ \hline 1110\end{array}$
0110
$-\frac{1100}{1010}-\frac{1100}{0011}$

Practice Problem 2,8 (solution page 145)
Fill in the following table showing the results of evaluating Boolean operations on bit vectors.

Web Aside DATA:BOOL. More"ón Boolean algebra and Boolean rings
The Boolean operations $1, \&$, and - operating on bit vectờs of length w form a Booleàn algebra,
, f the more general case there are 2^{w} bit vectors of length w. Booblean algebrá has many of the same propèrties as*arithmetic over integers. For example, juşst as multiplication distributes overy addition, written $a \cdot(b+c)=(a \cdot b)+(a * c)$, Booleān "p peration \& distributes over \downarrow, written $a \&(b \mid c)^{*}=(a \& b)$, ($a \& c$). In addition, however. Boolean operation \mid distributes over \&, and so we can write $a \mid(b \& c)=$ $(a \mid b) \&(a \mid c)$, whereas we cannot say that $a+(b \cdot c)={ }^{*}(a+* b) \cdot(a+c)$ holds fợ all integers.

When we consider òperations ${ }^{\wedge}, \&$, and ${ }^{*}$ "operating on "bit vectors of length w, we get a different mathematical form, known as a Boolean ring. Boolean rings have many"properties in common with, integer arithmetic. For example, onneproperty of integer arithmetic is thatt everỳ value x hấs àn additive inverse $-x$, such that $x+-x^{2}=0$. A similar property holds for Boolean rings, where - "is the "addition" operation, but in this case each element is its pwn additive, inverse. That is, $a \sim a=0$ for any valùe a, where we use 0 here to represent a bit vector of ${ }^{*}$ all zerồs, We can " see this holds fol single bits, since $0 \sim 0=1 \sim 1=0$, and it extênds to bit viêctorș as well. This property holds"even whenwe rearrange terms and combine them in a different order, and so $(a-b) \wedge^{\wedge} a=b$. This property leads to soménteresting results and clever tricks, as wew will explotrè in Probeblèm 2.10.

Operation	Result
a	$[01101001]$
b	$[01010101]$
$-a$	
$\sim b$	
$a \& b$	
$a \mid b$	
$a-b$	

One useful application of bit vectors is to represent finite sets. We can encode any subset $A \subseteq\{0,1, \ldots, w-1\}$ with a bit vector $\left[a_{w-1}, \ldots, a_{1}, a_{0}\right]$, where $a_{i}=1$ if and only if $i \in A$. For example, recalling that we write a_{w-1} on the left and a_{0} on'the right, bit vector $a=[01101001]$ encodes the set $A=\{0,3,5,6\}$, while bit vector $b=$ [01010101] encodes the set $B=\{0,2,4,6\}$. With this way of encoding sets, Boolean operations I and \& correspond to set union and intersection, respectively, and ~ corresponds to set complement. Continuing our earlier example, the operation $a \& b$ yields bit vector [01000001], while $A \cap B=\{0,6\}$.

We will see the encoding of sets by bit vectors in a number of practical applications. For example, in Chapter 8, we will see that there are a number of different signals that can interrupt the execution of a program.:We can selectively enable or disable different signals by specifying a bit-vector mask, where a 1 in bit position i indicates that signal i is enabled and a 0 indicates that it is disabled. Thus, the mask represents the set of enabled signals.

Computers generate color pictures on a video screen or liquịd crystal display by mixing three different colors of light: red, green, and blue. Imagine a simple scheme, with three different lights, each of which can be turned on or off, projecting onto a glass screen:

We can then create eight different colors based on the absence (0) onpresence (1) of light sources R, G, and B :

R	G	B	Color
0	0	0	Black
0	0	1	Blue
0	1	0	Green
0	1	1	Cyan
1	0	0	Red
1	0	1	Magénta
1	1	0	Yellow
1	1	1	White

Each of these colors can be represented as a bit vector of length 3, and we can apply Boolean.operations to.them.
A. The complement of a color is formed by turning off the lights that are on and turning on the lights that are off. What would be the complement of each of the eight colors listed above?
B. Describe the effect of applying Boolean operations on the following colors:
Blue | Green $=$
Yellow \& Cyan $=$
Red \sim Magenta $=$

2.1.7 Bit-Level Operations in C

One useful feature of C is that it supports bitwise Boolean operations. In fact, the symbols we have used for the Boolean operations are exactly those used by C : I for okk, \& for and, ~ for not, and - for exclusive-or. These can be applied to any "integral" data type, including all of those listed in Figure 2.3. Here are some examples of expression evaluation for data type char:

C expression	Binary expression	Binary result	Hexadecimal result
$\sim 0 \times 41$	$\sim[01000001]$	$[10111110]$	$0 \times B E$
$\sim 0 \times 00$	$\sim[00000000]$	$[11111111]$	$0 \times F F$
$0 \times 69 \& 0 \times 55$	$[01101001] \&[01010101]$	$[01000001]$	0×41
$0 \times 69 \mid 0 \times 55$	$[01101001] \mid[01010101]$	$[01111101]$	$0 \times 7 D$

As our examples show, the best way to determine the effect of a bit-level expression is to expand the hexadecimal arguments to their binary representations, perform the operations in binary, and then convert back to hexadecimal.

As an application of the property that $a 1^{\wedge} a=0$ for any bit vector a, consider the following program:

```
void inplace_swap(int *x, int *y) {
    *y = *x ^ *y; /* Step 1 */
    *x = *x - *y; /* Step 2 */
    *y = *x ^ *y; /* Step 3 */
}
```

As the name implies, we claim that the effect of this procedure is to swap the values stored at the locations denoted by pointer variables x and y. Note that unlike the usual technique for swapping two values, we do not need a third location to temporarily store one value while we are moving the other. There is no performance advantage to this way of swapping; it is merely an intellectual amusement.

Starting with values a and b in the locations pointed to by x and y , respectively, fill in the table that follows, giving the values stored at the two locations after each step of the procedure. Use the properties of ~ to show that the desired effect is achieved. Recall that every element is its own additive inverse (that is, $a^{\wedge}{ }^{\wedge} a=0$).

Step	$* \mathrm{x}$	$* \mathrm{y}$	
Initially	a	${ }^{3}$	b
Step 1	-		
Step 2	-	-	
Step 3	-		

Armed with the function inplace_swap from Problem 2.10, yoúdécide to write code that will reverse the elements of an array by swapping elements from opposite ends of the array, working toward the middle.

You arrive at the following function:

```
void.revęrse_arrray(int a[], sint çnt) {
    int first, last;
    for (first. ₹ 0, last = cnt-1;
        first <= last;
        firsf++,last--)
        inplace_swap(&a[first], &a[last]);
}
```

When you apply your function to an array containing , elements $1,2,3$, and 4, you find the array now has, as expected elements $4,3,2$, and 1 . When you try it on an array with elements $1,2,3,4$, and 5 , however, you are surprised to see that the árray now has elements $5,4,0^{\prime}, 2$, and 1 . In fact, you discover that the code always works correctly on arrays of even length, but it sets the middle element to 0 whenever the array has odd length.
A. For an array of odd length $c n t=2 k+1$, what are the values of variables first and last in the final iteration of function reverse_array?
B. Why does this call to function inplace_swap set the array element to 0 ?
C. What simple modification to the code for reverse_array would'eliminate this problem?

One common use of bit-level operations is to implement masking operations, where a mask is a bit pattern that indicates a selected set of bits within a word. As an example, the mask $0 \times \mathrm{FF}$ (having ones for the least-significant 8 bits) indicates the low-order byte of a word. The bit-level operátion $x \& 0 x F F$ yields a value consisting of the least significant byte of x, but with all other bytes set tón: 0 . For example, with $x=0 x 89 A B C D E F$, the expression would yield 0x000000EF. The expression ~ 0 will yield a mask of all ones, regardless of the size of the data representation. The same mask can be written 0xFFFFFFFF when data type int is 32 bits, but it would not be as portable.

Write C expressions, in terms of variable x, for the following values.' Your code should work for any word'size $w \geq 8$. Forreference, we show the result of evaluating the expressions for $\mathrm{x}=0 \times 87654321$, with $w=32$.
A. The least significant byte of x, with all other bits set to 0 . $\left[0 \times 0000002 \frac{1}{1}\right]^{\prime \prime}$,
B. All but the least significant byte of x complemented, with the least significant byte left unchanged. [0x789ABC21]
C. The least significant byte set to all ones, and all other bytes of x left, unchanged. [0x876543FF]

Practice problem $2 / 3$ (solution page (47)

The Digital Equipment VAX computer was a very popular machine from the late 1970s until the late 1980s. Rather than instructions for Boolean operations and and OR , it had instructions bis (bit set) and bic (bit clear). Both instructions take a data word x and a mask word m. They generate a result z consisting of the bits of x modified according to the bits of m. With bis, the modification involves setting z to 1 at each bit position where m is 1 . With bic, the modification involves setting z to 0 at each bit position where m is 1 .

To see how these operations relate to the C bit-level operations, assume we have functions bis and bic implementing the bit set and bit clear operations, and that we want to use these to implement functions computing bitwise operations I and ${ }^{\wedge}$, withọut using any other C operations. Fill in the missing code below. Hint: Write' C' expressions for the operations bis and bic.

```
/* Declarations of functions implementing operations bis and bic */
int bis(int x, int m);
int bic(int }x\mathrm{ , int m);
/* Compute x|y using only calls to functions bis and bic ,*/
int bool_or(int x, int y) {
    int result =
```

\qquad

```
    return result;
}
/* Compute x^y using only calles to functions bis and bic */
;
int bool_xor(int x; int y).{
    int. result =
```

\qquad

``` ;
    return result;
}:.*
```


2.1.8 Logical Operations in C

C also provides a set of logical operators |I, \&\&, and !, which correspond to the OR, AND, and NOT operations of logic. These can easily be confused with the bitlevel operations, but their behavior is quite different. The logical operations treat any nonzero argument as representing TRUE and argument 0 as representing FALSE. They return either 1 or 0 , indicating a result of either TRUE or ${ }^{\text {re }}$ FALSE,'respectively. Here are some examples of expression evaluation:

Expression	Result	
$!0 \times 41$	0×00	
10×00	0×01	
$1!0 \times 41$	0×01	
$0 \times 69 \& \& 0 \times 55$	0×01	
$0 \times 69 \\| 0 \times 55$	0×01	

Observe that a bitwise operation will have behavior matching that of its logical counterpart only in the special case in which the arguments are restricted to 0 or 1.

A second important distinction between the logical operators '\&\&' and ' I ' versus their bit-level counterparts ' $\&$ ' and ' l ' is that the logical operators do not evaluate their second argument if the result of the expression can be determined by evaluating the first argument. Thus, for example, the expression a \&\& $5 / \mathrm{a}$ will never cause a division by zero, and the expression p \&\& *p++ will never cause the dereferencing of a null pointer.

11

Suppose that x and y have byte values 0×66 and 0×39, respectively. Fill in the following table indicating the byte values of the different C expressions:

Expression	Value	Expression	Value	
$x \& y \cdots$		x \&\& y		
$x \mid y$	--momer	$x \\| y$		
$\sim x \mid m y$	\cdots	! $x\|\mid!y$	-	
$x \&!y$	-	x \& ${ }_{\text {c }} \sim \mathrm{y}$		

1

Using only bit-level and logical operations, write a C expression that is equivalent to $x=y$. In other words, it will return 1 when x and y are equal and 0 otherwise.

2.1.9 ShiftMperations int.

\dot{C} also provides a setyof shiffoperations for shifting bit patterns to the left andito the right. For an operand x having bit representation $\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]$, the C expression $\mathrm{x} \ll \mathrm{k}$ yields a value with bit representation $\left[x_{w-k-1}, x_{w-k-2}, \ldots, x_{0}\right.$, $0, \ldots, 0]$ That is, x is shifted k bits to the left, dropping off the k most significant bits and filling the right end with k zeros. The shift amount should be a value between 0 and $\dot{w}-1$. Shift operations associate from left to right, so $x^{\prime} \ll j \ll k$ is equivalent to $(x \ll j) \ll k$.

There is a corresponding right shift operation, written in Cas $x \gg k$, but it has a slightly subtle behavior. Generally, machines support two forms of right shift:

Logical. A logical right shift fills the left end with k zeros, giving a result $\left[0, \ldots, 0, x_{w-1}, x_{w-2}, \ldots x_{k}\right]$.
Arithmetic. An arithmetic right shift fills the left end with k repetitions of the most significant bit, giving a result $\left[x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots x_{k}\right]$. This convention might seem peculiar, but as we will see, it is useful for operating on signed integer data.

As-examples, the following, table shows the effect of applying the different shift operations to two different values of.án 8-bit argument x :

Operation	Value 1	Value 2
Argument x	$[01100011]$	$[10010101]$
$x \ll 4^{\prime}$	$[00110000]$	$[001010000]$
$x \gg 4^{\prime}$ (logical)	$[00000110]$	$[00001001]$
$x \gg 4$ (arithmetic)	$[00000110]$	$[11111001]$

The italicized digits indicate the values that fill the right (left shift) or left (right shift) ends. Observe that all but one entry involves filling with zeros. The exception is the case of shifting [10010101] right arithmetically, Since its most significant bit is 1 , this will be used as the fill value.

The C standards do not precisely define which type of right shift should be used with signed numbers-either arithmetic or logical shifts may be used. This unfortunately means that any code assuming one form or the other will potentially encounter portability problems. In practice, however, almost all compiler/machine combinations use arithmetic right shifts for signed data, and many programmérs assume this to be the case. For unsigned data, on the other hand, right shifts must be logical.

In contrast to C, Java has a precise definition of how right shifts should be performed. The expression $x \gg k$ shifts x arithmetically by k positions, while $x \ggg k$ shifts it logically.

Fill in the table below showing the effects of the different shift operations on singlebyte quantities. The best way to think about shift operations is to work with binary representations. Convert the initial values to binary, perform the shifts, and then cónvert back to hexadecimal. Each of the ánswers should bé 8 binary digits or 2 hexadecimal digits.

x		$x \ll 3$		$\begin{gathered} \text { Logical } \\ x \gg 2 \end{gathered}$		Arithmetic$x \gg 2$	
Hex	Binary	Binary	Hex	Binary	Hex	Binary	Hex
0xC3	-	-	--	-	-	- -	-
0x75	-	-	-	-	-	-	$\underline{0}$
0x87.	------	--	\square	-	-	-	\cdots
0x66	-	-----	-	-	-	\ldots	-

Aside Shifting by \dot{k} ，＇for large values of k

For a data type consisting of w bits，whảt should be the effect ö＊shifting by some value $k \geq w$ ？For example，what should be the effect of computing the following expressions，assuming datatype int has $w=32$ ：

The C standards carefully void stating what should bed done iñ suctha a case On many machines，the shift instructions consider only the lower $\log _{2} w$ bits of the shift amount when shifting a $w^{\prime \prime}$ bit value，and so the shift àmount is computed as k^{*} mod w. For exänple，with $w=32$ ，the above three shifts would be computed as if they were by momunts $0_{x^{3}}^{2} 4$ ，and 8 ，respectively，giving results
lvall 0xfebicbage
＂aval „0xFFEDCBA9＂
uva素 OxOOFEDC\＆BA
This behavior，is not guaranteed for Coprograms，however，and sơ shift amounts should be kept less than thê word size．s

Java；on the ot other haño s，specifically requires that shift amônts should be computed in the modular fashion we have shown．

Aside Operator precedence issues with shift operation ${ }^{*}$
It might be tenpting to write the expression＂ $1 \ll{ }^{*}+{ }^{*} 3 \ll 4$ ，intending it to mean $(1 \ll 2)+(3 \ll 4)$ ．How－ ever，in C the former expression＂is equivalent $\mathrm{t}_{\boldsymbol{*}} 1 \lll(2+3) \ll 4$ ，since addition（and subtraction）have higher precedence than shifts．The left－to－right associativity rule then causes this to be parenthesized $\operatorname{as}_{n}^{*}\left(\frac{1}{x} \ll(2+3)\right)^{*} \ll 4$ ，giving value 512 ，rather than the intended 522 ．

Getting the precedence wrong in C_{n} exprestions，is a cômmon source of program errors，and often these are difficult to spotiby inspection．Whern in doubt，pution parenthest

2．2 Integer Representations

In this section，we describe two different ways bits can be used to encode integers－ one that can only represent nonnegative numbers，and one that can represent negative，zero，and positive numbers．We will see later that they are strongly related both in their mathematical properties and their machine－level implemen－ tations．We also investigate the effect of expanding ór shrinking an encoded integer to fit a representation with a different length．

Figure 2.8 lists the mathematical terminology we introduce to precisely de－ fine and characterize how computers encode and operate on integer data．This

Symbol	Type	Meaning	Page
$B 2 T_{w}$	Function	Binary to two's complement	64
$B 2 U_{w}$	Function	Binary to unsigned	62
$U 2 B_{w}$	Function	Unsigned to binary	64
$U 2 T_{w}$	Function	Unsigned to two's complement	71
$T 2 B_{w}$	Function	Two's complement to binary	65
$72 U_{w}$	Function	Two's complement to unsigned	71
TMin $_{w}$	Çonstant	Minimum two's-complement value	65
TMax ${ }_{\text {w }}$	Constant	Maximum two's-complement value	65
$U M a x_{w}$	Constant	Maximum unsigned value	63
$+_{w}^{\text {t }}$	Operation	Two's-complement addition	90
${ }_{\text {+ }}^{\text {w }}$	Operation	Unsigned addition	85
$*_{w}^{1}$	Operation	Two's-complement multiplication	97
$*_{w}^{u}$	Operation	Unsigned multiplication	96
$-{ }_{w}^{\text {b }}$	Operation	Two's-complement negation	95
$\stackrel{-1}{*}_{\sim}^{\text {u }}$	Operation	Unsigned negation	89

Figure 2.8 Terminology for integer data and arithmetic operations. The subscript w denotes the number of bits in the data representation. The "Page" column indicates the page on which the term is defined.
terminology will be introduced over the course of the presentation. The figure is included here as a reference.

2.2.1 Integral Data Types

$\dot{\text { C }}$ supports a variety of integral data types-ones that represent finite ranges of integers. These are shown in Figures 2.9 and 2.10, along with the ranges of values they can have for "typical" 32 - and 64 -bit programs. Each type can specify a size with keyword char, short, long, as well as an indication of whether the represented numbers are all nonnegative (declared as unsigned), or possibly negative (the default.) As we saw in Figure 2.3, the number of bytes allocated for the different sizes varies according to whether the prograffis is compired for 32 or 64 bits. Based on the byte allocations, the different sizes allow different ranges of values to be represented. The only machine-dependent range indicated is for size designator long. Most 64 -bit programs use an 8-byte representation, giving a much wider range of yalues than thé 4-byte representation used with 32-bit programs.

One important feature to note in Figures 2.9 and 2.10 is that the ranges are not symmetric-the range ôf negative numbers extends one further than the range of positive numbers. We will see why this hăppens when we consider how negative numbers are represented.

C data type	Minimum	Maximum
[signed] char	-128	127
unsigned char	0	255
short	$-32,768$	32,767
unsigned short	0	65,535
int	$-2,147,483,648$	$2,147,483,647$
unsigned	0	$4,294,967,295$
long	$-2,147,483,648$	$2,147,483,647$
unsigned long	0	$4,294,967,295$
int32_t	$-2,147,483,648$	$2,147,483,647$
uint32_t	0	$4,294,967,295$
int64_t	$-9,223,372,036,854,775,808$	$9,223,372,036,854,775,807$
uint64_t	0	$18,446,744,073,709,551,615$

Figure 2.9 Typical ranges for C integral data types for 32-bit programs.

C data type	Minimum	Maximum
signed] char	-128	127
unsigned char	0	255
short	$-32,768$	32,767
unsigned short	0	65,535
int	$-2,147,483,648$	$2,147,483,647$
unsigned	0	$4,294,967,295_{3}^{\prime}$
long	$-2,147,483,648$	0

Figure 2.10 Typical ranges for C integral data types for 64-bit programs.

The C standards define minimum ranges of values that each data type must be able to represent! As shown in Figure 2.11, their ranges are the same or smaller than the typical implementations shown in Figures 2.9 and 2.10. In particular, with the exception of the fixed-size data types, we see that they require only a

C data type	Minimum	Maximum
[signed]char	-127	127
unsigned char	0	255
short	$-32,767$	32,767
unsigned short	0	65,535
int	$-32,767$	32,767
unsigned	0	65,535
long	$-2,147,483,647$	$2,147,483,647$
unsigned long	0	$4,294,967,295$
int32_t	$-2,147,483,648$	$2,147,483,647$
uint32_t	0	$4,294,967,295$
int64_t	$-9,223,372,036,854,775,808$	$9,223,372,036,854,775,807$
uint64_t	0	$18,446,744,073,709,551,615$

Figure 2.11 Guaranteed ranges for C integral data types. The C standards require that the data types have at least these ranges of values.
symmetric range of positive and negative numbers. We also see that data type int could be implemented with 2-byte numbers, although this is mostly a throwback to the days of. 16 -bit machines. We also see that size long can be implemented with 4-byte numbers, and it typically is for 32 -bit programs. The fixed-size data types guarantee that the ranges of values will be exactly those given by the typical numbers of Figure 2.9, including the asymmetry between negative and positive.

2.2.2 Unsìigned Encodings

Let us consider an integer data type of w bits. We write a bit vector as either \vec{x}, to denote the entire vector, or as $\left[x_{w-1}, x_{w-2}, \ldots ., x_{0}\right]$ to denote the individual bits within the vector. Treating \vec{x} as a number written in binary notation, we obtain the unsigned interpretation of \vec{x}. In this encoding, each bit x_{i} has value 0 or 1 , with the latter case indicating that value 2^{i} should be included as part of the numeric value. We can express this interpretation as a function $B 2 U_{w}$ (for "binary to unsigned," length w):

Figure 2.12
Unsigned number examples for $w=4$.
When bit i in the binary representation has value 1 , it contributes 2^{i} to the value.

PRINCIPLE: Definition of unsigned encoding
For vector $\vec{x}=\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]$:

$$
\begin{equation*}
B 2 U_{w}(\vec{x}) \doteq \sum_{i=0}^{w-1} x_{i} 2^{i} \tag{2.1}
\end{equation*}
$$

In this equation, the notation \doteq means that the left-hand side is defined to be equal to the right-hand side. The function $B 2 U_{w}$ maps strings of,zeros and, ones of length w to nonnegative integers. As examples, Figure 2.12 shows the mapping, given by $B 2 U$, from bit vectors to integers for the following cases:

$$
\begin{align*}
& B 2 U_{4}([0001])=0 \cdot 2^{3}+0 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=0+0+0+1=1 \\
& B 2 U_{4}([0101])=0 \cdot 2^{3}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=0+4+0+1=5 \\
& B 2 U_{4}([1011])=1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=8+0+2+1=11 \\
& B 2 U_{4}([1111])=1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=8+4+2+1=15 \tag{2.2}
\end{align*}
$$

In the figure, we represent each bit position i by a rightward-pointing blue bar of length 2^{i}. The numeric value associated with a bit, vector then equals. the sum of the lengths of the bars for which the corresponding bit values are 1.

Let us consider the range of values that can be represented using w bits. The least value is given by bit vector $[00 \cdots 0]$ having integer value 0 , and the greatest value is giveń by bit vector [11- •1] having infeger value $U M a x_{w} \doteq \sum_{i=0}^{w-1} 2^{i}=$ $2^{w}-1$. Using the 4 -bit case as an example, we have $U M a x_{4}=B 2 U_{4}([1111])=$ $2^{4}-1=15$. Thus, the function $B 2 U_{w}$ can be defined as a mapping $B 2 U_{w}:\{0,1\}^{w} \rightarrow$ $\left\{0, \ldots\right.$, UMax $\left._{w}\right\}$.

The unsigned binary representation has the important property that*every númber between 0 and $2^{w}-1$ has a unique encoding as a w-bit value. For examplé;
there is only one representation of decimal value 11 as an unsigned 4-bit numbernamely, [1011]. We highlight this as a mathematical principle, which we first state and then explain.

PRINCIPLE: Uniqueness of unsigned encoding

Function $B 2 U_{w}$ is a bijection.
The mathematical term bijection refers to a function f that goes two ways: it maps a value x to a value y where $y=f(x)$, but it can also operate in reverse, since for every y, there is a unique value x such 4 that $f(x)=y$. This is given by the inverse function f^{-1}, where, for our example, $x=f^{-1}(y)$. The function $B 2 U_{w}$ maps each bit vector of length w to a unique number between 0 and $2^{w}-1$, and it has an inverse, which we call $U 2 B_{w}$ (for "unsigned to binary"), that maps each number in the range 0 to $2^{w}-1$ to a unique pattern of w bits.

2.2.3 Two's-Complement Encodings

For many applications, we wish to represent negative values as well. The most common computer representation of signed numbers is known as two's-complement form. This is defined by interpreting the most significant bit of the word to have negative weight. We express this interpretation as a function $B 2 T_{w}$ (for "binary to two's complement" length w):

PRINCIPLE: Definition of two's-complement encoding
For vector $\vec{x}={ }^{2}\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]$;

$$
\begin{equation*}
B 2 T_{w}(\vec{x}) \doteq-x_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} x_{i} 2^{i} \tag{2.3}
\end{equation*}
$$

The most significant bit x_{w-1} is also called the sign bit. Its "weight" is -2^{w-1}, the negation of its weight in an unsigned representation. When the sign bit is set to 1 , the represented value is negative, and when set to 0 , the value is nonnegative. As examples, Figure 2.13 shows the mapping, given by $B 2 T$, from bit vectors to integers for the following cases:

$$
\begin{align*}
& B 2 T_{4}([0001])=-0 \cdot 2^{3}+0^{\prime} \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=0+0+0+1=1 \\
& B 2 T_{4}([0101])=-0 \cdot 2^{3^{3}+1}+1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}=0+4,+0+1=15 \\
& B 2 T_{4}([1011])=-1 \cdot 2^{3}+0 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=-8+0+2+1=-5 \\
& B 2 T_{4}([1111])=-1 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}=-8+4+2+1=-1 \tag{4}
\end{align*}
$$

In the figure, we indicate that the sign bit has negative weight by showing it as a leftward-pointing gray bar. The numeric value associated with a bit vector is then given by the combination of the possible leftward-pointing gray, bar and the rightward-pointing blue bars.

Figure 2.13
Two's-complement number examples for $w=4$. Bit 3 serves as a sign bit; when set to 1 , it contributes $-2^{3}=-8$ to the value. This weighting is shown as a leftwardpointing gray bar.

We see that the bit patterns are identical for Figures 2.12 and 2.13 (as well as for Equations 2.2 and 2.4), but the values differ when the most significant bit is 1 , since in one case it has weight +8 , and in the other case it has weight -8 .

Let us considér the range of values that can be represented as a w-bit two'scomplement number. The least representable value is given by bit vector [$10 \cdots 0$] (set the bit with negative weight but clear all others), having integer value $T M i n, w \doteq-2^{w-1}$. The greatest value is given by bit vector [$01 \cdots 1$] (clear the bit with negative weight but set all others), having integer value $T M a x_{w} \doteq \sum_{i=0}^{w-2} 2^{i}=$ $2^{w-1}-1$. Using the 4-bit case as an example, we have $\operatorname{TMin}_{4}=B 2 T_{4}([1000])=$ $-2^{3}=-8$ and $\operatorname{TMax}_{4}=B 2 T_{4}([0111])=2^{2}+2^{1}+2^{0}=4+2+1=7$.

We can see that $B 2 T_{w}$ is a mapping of bit patterns of length w to numbers between $T_{M i n}^{w}$ and $T M a x, w$, written as $B 2 T_{w}:\{0,1\}^{w} \rightarrow\left\{\right.$ TMin $\left._{w}, \ldots, T_{M a x}^{w}\right\}$. As we saw with the unsigned representation, every number within the representable range has a unique encoding as a w-bit two's-complement number. This leads to a principle for two's-complement numbers similar to that for unsigned numbers:

PRINCIPLE: Uniqueness of two's-complement encoding
Function $B 2 T_{w}$ is a bijection.

We define function $T 2 B_{w}$ (for "two's complement to binary") to be the inverse of $B 2 T_{w}$. That is, for a number x, such that $\operatorname{TMin}_{w} \leq x \leq T M a x_{w}, T 2 B_{w}(x)$ is the (unique) w-bit pattern that encodes x.

Practice Problem 2.17 (solution page 148)

Assuming $w=4$, we can assign a numeric value to each possible hexadecimal digit, assuming either an unsigned or a two's-complement interpretation. Fill in the following table according to these interpretations by writing out the nonzero powers of 2 in the summations shown in Equations 2.1 and 2.3:

\vec{x}			$B 2 U_{4}(\vec{x})$
Hexadecimal	Binary	$B 2 T_{4}(\vec{x})$	
0×5	$[1110]$	$2^{3}+2^{2}+2^{1}=14$	$-2^{3}+2^{2}+2^{1}=-2$
0×0	-		
0×5			
0×8			
$0 \times D$			
$0 \times F$			

Figure 2.14 shows the bit patterns and numeric values for several important numbers for different word sizes. The first three give the ranges of representable integers in terms of the values of $U M a x_{w}, T M i n_{w}$, and TMax . We will refer to these three special values often in the ensuing discussion. We will drop the subscript w and refer to the values $U M a x, T M i n$, and TMax when w can be inferred from context or is not central to the discussion.

A few points are worth highlighting about these numbers. First, as observed in Figures 2.9 and 2.10, the two's-complement range is asymmetric: $|T \dot{M} i n|=$ $|' T M a x|+1$; thąt is, there is no positive counterpart tó' TMin. Às we shall see, this leads to some peculiar properties of two's-complement arithmetic and can be the spurce of subtle program bugs. This asymmetry arises because half the bit patterns (those with the sign bit set to 1) represent negative numbers, while half (those with the sign bit set to 0) represent nonnegative numbers. Since 0 is nonnegative, this means that it can'represent one less positive number than negative. Second, the maximum unsigned value is just over twice the maximum two's-complement value: $U M a x=2 T M a x+1$. All of the'bit patterns'that denote negativé numbers in two's-complement notation becom' épositive values in an unsigned representation.

Value	Word size w			
	8	16	32	64
$U M a x_{w}$	OxFF	0xFFFF	0xFFFFFFFF	OxFFFFFFFFFFFFFFFFF
	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMin_{w}	0×80	0x8000	0x80000000	0x8000000000000000
	-128	-32,768	-2,147,483,648.	-9,223,372,036,854,775,808
$T M a x_{w}$	0x7F	0x7FFF	0x7FFFFFFF ${ }^{1}$	0x7FFFFFFFFFFFFFFF
	127	32,767	2,147,483,647	9,223,372,036,854,775,807
-1	OxFF	OxFFFF	OxFFFFFFFF	OXFFFFFFFFFFFFFFFFF
0	0×00	0x0000	0x00000000	0x0000000000000000

Figure-2.14 Important numbers. Both numérit values and hexadecimal rêpresentations are shown.

Aside More on fixed-size integer types,

For some programs, it is essential that data types be encoded using representations with specific sizes. For example, when writing programis to enable a machine to communicate over the Internet according to a standard protocol, it is impőrtant to have data types compatible with those spêcified by the protocol.
${ }^{*}$ We have seen that some C data types, especially long, have different ranges on different machines,

* and in fact the E standards only specify the minimum ranges for any data type, not the exact ranges. Although we can choose data types that will be compatible with standard representations on most machines, there is no guarantee of portability.

We have already encountered the 32-and 64-bit versions of fixed-size integer types (Figure 2.3);
 in the file stdint.h. This file defines a set of data types with declarations of the form int $N_{-} t_{6}$ and uint N_{-}t, specifying N-bit signed and ansigned integers, for different values of N. The exact values of N are implementation dependent, but most compilers allow values of $8,16,32$, and 64 . Thus, we can unambiguously declare an unisigned 16 -bit variable by giving it type uint16_t, and a signed variable of 32 bits as int32_t.

Along with these data types are as set macros defining the minimum and maximum values for

Formatted printing with fixed-width types requires use of macros that expand into formatstrings in a system-dependent manner. So, for example, the values of variables x and y^{3} of type int ${ }^{3}$. प̂int64_t cân be printed by the following call to printef:

When cổmpiled as"a 64 -bit progràm, macr" PRId32 expandš to the string "d", while PRIu64 expânds to the pair of strings "1" "u". When the C prêprocessor encounters a sequénce of string coznstants separated only by "spaces (or other whitespace characterrs), it concatenates them together. Thus, the

* above call to printf becomes

```
    printf("x
```

 compiled.

Figure 2.14 also shows the representations of constants -1 and 0 . Note that -1 has the same bit representation as $U M a x-$ a string of all ones. Numeric value 0 is represented as a string of all zeros in both representations.

The C standards do not require signed integers to be represented in two'scomplement form, but nearly all machines do so. Programmers who are concerned with maximizing portability across all possible machines should not assume any particular range of representable values, beyond the ranges indicated in Figure 2.11, nor should they assume any particular representation of signed numbers. On the other hand, many programs are written assuming a two's-complement representation of signed numbers, and the "typical" ranges shown in Figures 2.9 and 2.10, and these programs are portable across a broad range of machines and compilers. The file <limits.h> in the C library defines a set of constants

Aside Alternativé representations of signed numbers There are two other standardrepresentations for signed numbers: "Ones' complements This is thé same as two's complement, except that the most significant bit has *s weight $-\left(2_{*}^{w-1}-\frac{1}{8}\right)_{s}^{*}$ rather thath -2^{w-1}

Sign magnitude. The most significant bit is a sign bit that determines whether the remaining bits should be giveri negative or positive weight:

Both of these representations have the curious property that there are two different encodings of the number 0 . For both representations, $[00 \cdots 0]$ is interpreted as" ${ }^{* *}+0$. The value -0^{*} can be represented in sign-magnitude form as $\left[10_{0}^{*} \cdots 0\right]$ and in oness' complement as $[11 \cdots 1]$. Although machines based on ones'-complement representations were built in the past, almost all modern machines use two's complement. We will see thât sign-magnitude êncởding is us̉ed with floating-point numbers.

Note the different position of apostrophes; two's complement versûs ones' complement. The term "two's complement" arises from the fact that formonnegative x we compute $\mathrm{a}^{x} w$-bit representation of $-x$ ass $2^{w}-x$ (a single two.) The term "ones' complement" comes from the property that we can compute $-x$ in this notation as [111 $\% \cdot 1$]-x (multiple ones).
delimiting the ranges of the different integer data types for the particular machine on which the compiler is running. For example, it defines constants INT_MAX, INT_ MIN, and UINT_MAX describing the ranges of signed and unsigned integers. For a two's-complement machine in which data type int has w bits, these constants correspond to the values of $T M a x_{w}, T M i n_{w}$, and $U M a x_{w}$.

The Java standard is quite specific about integer data type ranges and representations. It requires a two's-complement representation with the exact ranges shown for the 64-bit case (Figure 2.10). In Java, the single-byte data type is called byte instead of char. These detailed requirements are intended to enable Java programs to behave identically regardless of the machines or operating systems running them.

To get a better understanding of the two's-complement representation, consider the following code example:

```
short x = 12345;
short mx = -x;
show_bytes((byte_pointer) &x,' sizeof(short));
show_bytes((byte_pointer) &mx, sizeof(short));
```

	12,345			$-12,345$			53,191	
Weight	Bit	Value		Bit	Value		Bit	
1	1	1	1	1	1	Value		
2	0	0	1	2	1	2		
4	0	0	1	4	1	4		
8	1	8	0	0	0	0		
16	1	16	0	0	0	0		
32	1	32	0	0	0	0		
64	0	0	1	64	1	64		
128	0	0	1	128	1	128		
256	0	0	1	256	1	256		
512	0	0	1	512	1	512		
1,024	0	0	1	1,024	1	1,024		
2,048	0	0	1	2,048	1	2,048		
4,096	1	4,096	0	0	0	0		
8,192	1	8,192	0	0	0	0		
16,384	0	0	1	16,384	1.	16,384		
$\pm 32,768$	0	0	1	$-32,768$	1	32,768		
Total		12,345		$-12,345$		53,191		

Figure 2.15 Two's-complement representations of 12,345 and $-12,345$, and unsigned representation of 53,191 . Note that the latter two have identical bit representations.

When run on a big-endian machine, this code prints 3039 and $c f c 7$, indicating that x has hexadecimal representation 0×3039, while mx has hexadecimal representation $0 x C F C 7$. Expanding these into binary, we get bit patterns [0011000000111001] for x and [1100111111000111] for mx . As Figure 2.15 shows, Equation 2.3 yields values 12,345 and $-12,345$ for these two bit patterns.

Practice Problem 2. 18 (solution page 149)
In Chapter 3, we will look at listings generated by a disassembler, a program that converts an executable program file back to a more readable ASCII form. These files contain many hexadecimal numbers, typically representing values in two'scomplement form. Being able to recognize these numbers and understand their significance (for example, whether they are negative or positive) is an important skill.

For the lines labeled A-I (on the right) in the following listing, convert the hexadecimal values (in 32-bit two's-complement form) shown to the right of the instruction names (sub, mov, and add) into their decimal equivalents:

4004d0:	4881 ec e0 020000	sub	\$0×x 2 e 0 \%rsp
4004d7:	488 b 4424 a 8	mov	-0x58(\%rsp), \%rax
4004dc:	48034728	add	0x28(\%rdi) , \%rax
4004e0:	48894424 do	mov	\%rax, -0x30 (\%rsp)
4004e5:	488 bb 442478	mov	0x78(\%rsp) , \%rax
4004ea:	48898788000000	mov	\%rax,0x88(\%rdi)
4004f1:	48 8b 8424 f8 0100	mov	0x1f8(\%rsp), \%rax
4004f8:	00		
4004f9:	4803442408	add	0x8(\%rsp) , \%rax
4004fe:	$48898424 c 00000$	mov	\%rax, 0xc0(\%rsp)
400505:	00		
400506:	$48 \mathrm{8b} 44 \mathrm{~d} 4 \mathrm{~b} 8$	mov	-0x48(\%rsp,\%rdx, 8) , \%rax

2.2.4 Conversions between Signed and Unsigned

C allows casting between different numeric data types. For example, suppose variable x is declared as int and u as unsigned. The expression (unsigned) x converts the value of x to an unsigned value, and (int) u converts the value of u to a signed integer. What should be the effect of casting signed value to unsigned, or vice versa? From a mathematical perspective, one can imagine several different conventions. Clearly, we want to preserve any value that can be represented in both forms. On the other hand, converting a negative value to unsigned might yield zero. Corrverting an unsigned value that is too large to be represented in two'scomplement form might yield TMax. For most implementations of C, however, the answer to this question is based on a bit-level perspective, rather than on a numeric one.

For example, consider the following code:

```
1 short int , v, = -12345;
2 unsigned short -uv = (unsigned short) y;
3 prinṭf("v = %d, uv = %u\n!", ve, uve);
```

When run on a two ${ }^{\prime 2}-c^{\circ} \mathrm{mplement}$ machine, it generates the following output:

```
v = -12345, uv = 53191
```

What we see here is that the effect of casting is to keep the bit values identical but change how these bits are interpreted. We saw in Figure 2.15 that the 16 -bit two's-complement'rèpresentation' of $-12,345$ is identical 'to the 16 -bit unsigned représentatiọh 'of '53,191. Castịng from short' to unsigned short changed the numeric value, but not the bit representation.

Similarly, cönsider the following code:

```
unsigned u = 4294967295u; /* UMax */
,int tu =,,(int)'u;
```

3

$$
\text { printf("u }=\% u, t u=\% d \backslash n ", u, t u) ;
$$

When run on a two's-complement machine, it generates the following output:
$u=4294967295, t u=-1$
We can see from Figure 2.14 that, for a 32-bit word size, the bit patterns representing 4,294,967,295 (UMax $_{32}$) in unsigned form and -1 in two's-complement form are identical. In casting from unsigned to int, the underlying bit representation stays the same.

This is a general rule for how most C implementations handle conversions between'signed and unsigned numbers with the same word size-the numeric values.might change, but the bit patterns do not. Let. us capture this idea in a more mathematical form. We defined functions $U 2 B_{w}$ and $T 2 B_{w}$ that map numbers to their bit representations in either unsigned or two's-complement form. That is, given an integer x in the range $0 \leq x<U M a x_{w}$, the function $U 2 B_{\dot{w}}(x)$ gives the unique w-bit unsigned representation of x. Similarly, when x is, in the range $\operatorname{TMin}_{w} \leq x \leq T M a x$, the function $T 2 B_{w}(x)$ gives the unique w-bit two'scomplement representation of x.

Now define the function $T 2 U_{w}$ as $T 2 U_{w}(x) \doteq B 2 \grave{U}_{w}\left(T 2 B_{w}(x)\right)$. This function takes a number between TMin_{w} and $T M a x_{w}$ and yields a number between 0 and $U M a x_{w}$, where the two numbers have identical bit representations, except that the argument has a two's-complement representation while the result is unsigned. Similarly, for x between 0 and $U M a x_{w}$, the function $U 2 T_{w}$, defined as $U 2 T_{w}(x) \doteq$ $B 2 T_{w}\left(U 2 B_{w}(x)\right.$;;'yields the number having the same two's-complement representation as the unsigned representation of x.

Pursuing our earlier examples, we see from Figure 2.15 that $T 2 U_{16}(-12,345)$ $=53,191$, and that $U 2 T_{16}(53,191)=-12,345$. That is, the 16 -bit pattern written in hexadecimal as $0 \times \mathrm{xCFC7}$ is both the two's-complement representation of $-12,345$ and the unsigned representation of 53,191 . Note also that $12,345+53,191=$ $65,536=2^{16}$. This property generalizes to a relationship between the two numeric values (two's complement and unsigned) represented by a given bit pattern. Similarly, from Figure 2.14, we see that $T 2 U_{32}(-1)=4,294,967,295$, and $U 2 T_{32}(4,294,967,295)=-1$. That is, UMax has the sáme bit representation in unsigned form as does -1 in two's-complement form. We can also see the relationship between these two numbers: $1+U M a x=2^{w}$.

We see, then, that function $T 2 \dot{U}$ describes the conversion of a two'scomplement number to its unsigned counterpart, while $U 2 T$ converts in the opposite direction. These describe the effect of casting between these data types in most C implementations.

Using the table you filled in when solving Problem 2.17, fill in the following table describing the function $T 2 U_{4}$:

| x $T 2 U_{4}(x)$
 -8
 -3 -
 -2 -
 -1 -
 0 -
 5 - |
| :--- | :--- |

The relationship we have seen, via several examples, between the two'scomplement and unsigned values for a given bit pattern can be expressed as a property of the function $T 2 U$:

PRINCIPLE: Conversion from two's complement to unsigned Fór x^{2} such that $T M i n_{w}^{t} \leq x \leq$ TMä $_{w}$:

$$
T 2 U_{w}(x)= \begin{cases}x+2^{w}, & x<0 \tag{2.5}\\ x, & x \geq 0\end{cases}
$$

For example, we saw that $T 2 U_{16}(-12,345)=-12,345+2^{16}=53,191$, and also that $T 2 U_{w}(-1)=-1+2^{w}=U M a x_{w}$.

This property can be derived by comparing Equations 2.1 and 2.3.
DERIVATION: Conversion from two's complement to unsigned
Comparing Equations 2.1 and 2.3, we can see that for bit pattern \vec{x}, if we compute the difference $B 2 U_{w}(\vec{x})-B 2 T_{w}(\vec{x})$, the weighted sums for bits from 0 to $w-2$ will cancel each"dther, leaving a value $B 2 U_{w}(\vec{x})-B 2 F_{i w}(\vec{x}) \doteq x_{w-1}\left(2^{w-1}--2^{w-1}\right) \geqslant$ $x_{w-1} 2^{w}$. This givés a relationship $B 2 U_{w}(\vec{x})=B 2 T_{w}(\vec{x})+x_{w-1} 2^{w}$. Wéd therefore have

$$
\begin{equation*}
B 2 U_{w}\left(T 2 B_{w}(x)\right)=T 2 U_{w}(x)=x+x_{w^{*}-1} 2^{w} \tag{2.6}
\end{equation*}
$$

In a two's-complement representation of x, bit x_{w-1} determines whether or not x is negative, giving thertwo cases of Equation 2.5.

As examples, Figure 2.16 compares how functions $B 2 U$ and $B 2 T$ assign values to bit patterns for $w=4$. For the two's-complement case, the most significant bit serves as the sign bit, which we diagram as a leftward-pointing gray bar. For the unsigned case, this bit has positive weight, which we show as a rightward-pointing black bar. In going from two's complement to unsigned, the most significant bit changes its weight from -8 to +8 . As a consequence, the values that are negative in a two's-complement representation increase by $2^{4}=16$ with arr unsigned representation. Thus, -5 becomes +11 , and -1 becomes +15 .

Figure 2.16
Comparing unsigned and two's-complement representations for $w=4$. The weight of the most significant bit is -8 for two's complement and +8 for unsigned, yielding a net difference of 16 .

Figure 2.17
Conversion from two's complement to unsigned. Function $T 2 U$ converts negative numbers to large positive numbers.

Figure 2.17 illustrates the general behavior of function $T 2 U$. As it shows, when mapping a signed number to its unsigned counterpart, negative numbers are converted to large positive numbers, while nonnegative. numbers remain unchanged.

Explain how Equation 2.5 applies to the entries in the table you generated when solving Problem 2.19.

Going in the other direction, we can state the relationship between an unsigned number u and its signed counterpart $U 2 T_{w}(u)$:

PRINCIPLE: Unsigned to two's-complement conversion
For u such that $0 \leq u \leq U M a x_{w}$:

$$
U 2 T_{w}(u)= \begin{cases}u, & u \leq T M^{\prime} a x_{w} \tag{2.7}\\ u-2^{w}, & u>\operatorname{TMax}_{w}\end{cases}
$$

Figure 2.18
Conversion from unsigned to two's complement. Function U2T converts numbers greater than $2^{w-1}-1$ to negative yalues.

This principle can be justified as follows:
DERIVATION: Unsigned to two's-complement conversion
Let $\vec{u}=U 2 B_{w}(u)$. This bit vector will also be the two's-complement representation of $U 2 T_{w}(u)$. Equations 2.1 and 2.3 can be combined to give

$$
\begin{equation*}
U 2 T_{w}(u)=-u_{w-1} 2^{w}+u \tag{2.8}
\end{equation*}
$$

In the unsigned representation of u, bit u_{w-1} determines whether or not u is greater than $T M a x_{w}=2^{w-1}-1$, giving the two cases of Equation 2.7.

The behavior of function ${ }^{\dagger} U 2 T$ is illustrated in Figure 2.18. For small ($\leq T M a x_{w}$) numbers, the conversion from unisigned to signed preserves the numeric value. Large ($>T M a x_{w}$) numbers are converted to negative values.

To summarize, we considered the effects of converting in both directions between unsigned and two's-complement representations. For values x in the range $0 \leq x \leq T M a x_{w}$, we have $T 2 U_{w}(x)=x_{\text {, }}$ and. $U 2 T_{\dot{w}}(x)=x$. That is, numbers in this range have identical unsigned and two's-complement representations. For values outside of this range, the conversions either add or subtract 2^{w}. For example, we have $T 2 U_{w}(-1)=-1+2^{w}=U M a x{ }_{w}$-the negative number closest to zero maps to the largest unsigned number. At the other extreme, one can see thăt $T 2 U_{w}\left(T M i n_{w}^{\prime}\right)=-2^{w-1}+2^{w}=2^{w-1}=T M a^{\prime} x_{w}+1^{\text {n. }}$ - the most negative number maps to an unsigned number just outside the range of pósitive two's-complement numbers. Using the example of Figure 2.15, we can see that $T 2 U_{16}(-12,345)=65,536+-12,345=53,191$.

2.2.5 Signed versus Unsigned in C

As indicated in Figures 2.9 and 2.10, C'supports both signed and unsigned arithmetic for all of its integer data types. Although the C standard does not specify a particular representation of signed numbers, almost all machines use two's complement. Generally, most numbers are signed by ḍefault. For example, when declaring a constant such as 12345 or $0 \times 1 \mathrm{~A} 2 \mathrm{~B}$, the value is considered signed. Adding character ' U ' or ' u ' as a suffix creates an unsigned constant; for example, 12345 U or $0 \times 1 \mathrm{~A} 2 \mathrm{Bu}$.

C allows conversion between unsigned and signed. Although the C standard does not specify precisely how this conversion should be made, most systems follow the rule that the underlying bit representation does not change. This rule has the effect of applying the function $U 2 T_{w}$ when converting from unsigned to signed, and $T 2 U_{w}$ when converting from signed to unsigned, where w is the number of bits for the data type.

Conversions can happen due to explicit casting, such as in the following code:

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Alternatively, they can happen implicitly "when àn expression of one type is assigned to a variable of another, as in the following code:

```
int 'tx, ty;
unsigned ux, uy;
tx = ux; /* Cast to signed**/
uy = ty; /* Cast to unsigned */
```

When printing numeric values with printf, the directives $\% \mathrm{~d}, \% \mathrm{u}$, and $\% \mathrm{x}$ are used to print a number as a signed decimal, an unsigned decimal, and in hexadecimal format, respectively. Note that printf does not make use of any type information, and so it is possible to print a value of type int with directive $\% u$ and a value of type unsigned with directive \%d. For example, consider the following code:

```
int x = -1;
unsigned u =, 2147483648; /* 2 to the 31st */
printf("x = %u = %d\n", x, x);
printf("u = %u = %d\n", u,u);
```

When compiled as a 32-bit program, it prints the following:

```
x = 4294967295 = -1
u = 2147483648=-2147483648
```

In both cases, printf prints the word first as if it represented an unsigned number and second as if it represented a signed number. We can see the conversion routines in action: $T 2 U_{32}(\therefore 1)=U M a x{ }_{32}=2^{32}-1$ and $U 2 T_{32}\left(2^{31}\right)^{\prime}=2^{31}-2^{32}=$ $-2^{31}=$ TMin $_{32}$.

Sóme possibly nonintuitive behavior arišes due to 'C's handling of expressions containing combinations of signed and unsigned quantitịes. When ań operation is performed where one operand is signed and the other is unsigned, C implicitly casts the signed argument to unsigned and performs the operations

		Expression		Typé
0	Ev́aluation			
-1	$<$	$0 U$	Unsigned	1
-1	$<$	0	Signed	1
2147483647	$>$	$-2147483647-1$	Unsigned	0^{*}
2147483647 U	$>$	$-2147483647-1$.	Unsigned	1
2147483647	$>$	(int) 2147483648 U	Signed	0^{*}
-1	$>$	-2	Signed	1
(unsigned) -1	$>$	-2	Unsigned	1

Figure 2.19 Effects of C promotion rules. Nonintuitive cases are marked by '*'. When either operand of a comparison is unsigned, the other operand is implicitly cast to unsigned. See Web Aside DATA:TMIN for why we write TMin $_{32}$ as $-2,147,483,647-1$.
assuming the numbers are nonnegative. As we will see, this convention makes little difference for standard arithmetic operations, but it leads to nonintuitive results for relational operators such as < and >. Figure 2.19 shows some sample relational expressions and their resulting evaluations, when data type int has a 32-bit two's-complement representation. Consider the comparison $-1<0 \mathrm{u}$. Since the second operand is unsigned, the first one is implicitly cast to unsigned, and herice the expression is equivalent to the comparison 4294967295 U < 0 U (recall that $T 2 U_{w}(-1)={ }_{i} U M a x_{w}$), which of course is false. The other cases can be understood by similar analyses.

Practice Problem 221 (solution onde 149) Wrysyry Mrsy
 chine that uses two's-complement arithmetic, fill in the following table describing the effect of casting and relational operations, in-the style of Figure 2.19:

Expression	Type	Evaluation
$-2147483647-1==2147483648 \mathrm{U}$	-	-
$-2147483647-1<2147483647$		
$-2147483647-1 \mathrm{U}<2147483647$	-	-
$-2147483647-1<-2147483647$	-	-
$-2147483647-1 \mathrm{U}<-2147483647$	-	

2.2.6 Expanding the Bit Representation of a Number

One common operation is to conyert between integers having different word sizes while retaining the same numeric value. Of course, this maynt be possible when the destination data type is too small to represent the desired value. Converting from a smaller to a lariger'data, type, however, should always be possible. is

not simply write it as either $-2^{*}, 147,483,648$ or 0×80000000 ? Looking at the C header file limits. ${ }^{*}$,

 tionand the conversion rule of C forces usto write TMin 3 in this unusual way. Although understanding
 us appreciate some of the subtleties of infeger data types and drepresentations,

To convert an unsigned number to a larger data type, we can simply add leading zeros to the representation; this operation is known as zero extension, expressed by the following principle:

PRINCIPLE: Expansion of an unsigned number by zero extension
Define bit vectors $\vec{u}=\left[u_{w-1}, u_{w-2}, \ldots, u_{0}\right]$ of width w and $\vec{u}^{\prime}=\left[0, \ldots, 0, u_{w-1}\right.$, u_{w-2}, \ldots, u_{0}] of width w^{\prime}, where $w^{\prime}>w$. Then $B 2 U_{w}(\vec{u})=B 2 U_{w^{\prime}}\left(\vec{u}^{\prime}\right)$.

This principle can be seen to follow directly from the definition of the unsigned encoding, given by Equation 2.1.

For converting a two's-complement number to a larger data type, the rule is to perform a sign extension, adding copies of the most significant bit to the representation, expressed by the following principle. We show the sign bit x_{w-1} in blue to highlight its role in sign extension.

PRINCIPLE: Expansion of a two's-complement number by sign extension
Define bit vectors $\vec{x}=\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]$ of width w and $\vec{x}^{\prime}=\left[x_{w-1}, \ldots, x_{w-1}\right.$, $x_{w-1}, x_{w-2}, \ldots, x_{0}$] of width w^{\prime}, where $w^{\prime}>w$. Then $B 2 T_{w}(\vec{x})=B 2 T_{w^{\prime}}\left(\vec{x}^{\prime}\right)$.

As an example, consider the following code:

```
short sx = -12345; /* -12345 */
unsigned short usx = sx; /* 53191 */
int x = sx; /* -12345 */
unsigned ux = usx; /* 53191 */
printf("sx = %d:\t", sx);
show_bytes((byte_pointer) &sx, sizeof(short));
printf("usx = %u:\t", usx);
show_bytes((byte_pointer) &usx, sizeof(unsigned short));
printf("x = %d:\t", x);
```

```
11 show_bytes((byte_pointer) &x, sizeof(int));
12 printf("ux = %u:\t", ux);
1,3 show_bytes((byte_pointer) &ux, sizeof(unsigned));
```

When run as a 32 -bit program on a big-endian machine that uses a two'scomplement representation, this code prints the output

```
sx = -12345: cf c7
usx = 53191: cf c7
x = -12345: ff ff cf c7
ux = 53191: 00 00 cf c7
```

We see that, although the two's-complement representation of $-12,345$ and the unsigned representation of 53,191 are identical for a 16 -bit word size, they differ for a 32 -bit word size. In particular, $-12,345$ has hexadecimal representation $0 \times 5 F F F C F C 7$, while 53,191 has hexadecimal representation 0x0000CFC7. The former hạs been sign extended- 16 copies of the most significant bit 1 , having hexadeciffral representation 0xFFFF, have been added as leading bits. The latter has been extended with 16 leading zeros, having hexadecimal representation 0×0000.

As an illustration, Figure 2.20 shows therresult of expanding from word size $w=3$ to $w=4$ by sign extension. Bit vector [101] represents the value $-4+1=-3$. Applying sign extension givesrbit vector [1101] representing the value $-8+4+$ $1=-3$. We can see that, for $w=4$, the combined value of the two most significant bits, $-8+4=-4$, matches the value of the sign bit for $w=3$. Similarly, bit vectors [111] and [1111] both represent the value -1 .

With this as intuition, we can now show that sign extension preserves the value of a two's-complement number.

Figure 2.20
Examples of sign extension from $w=3$ to $w=4$. For $w=4$, the combined weight of the upper 2 bits is $-8+4=-4$, matching that of the sign bit for $w=3$.

DERIVATION ${ }_{\mathrm{r}}$:Expansion of a two'stcomplement number by sign extension
Let $w^{\prime}=w+k^{\prime}$. What we want to probve is that

$$
B 2 T_{w+k}([\underbrace{x_{w-1}, \ldots, x_{w-1}}_{k \text { times }}, x_{w-1}, x_{w-2}, \ldots, x_{0}])=B 2 T_{w}\left(\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]\right)
$$

The proof follows by induction on k. That is, if we can prove that sign extending by 1 bit preserves the numeric value, then this property will hold when sign extending by an arbitrary number of bits. Thus, the task reduces to proving that

$$
B 2 T_{w+1}\left(\left[x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_{0}\right]\right)=B 2 T_{w}\left(\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]\right)
$$

Expanding the left-hand expression with Equation 2.3 gives the following:

$$
\begin{aligned}
B 2 T_{w+1}^{\prime}\left(\left[x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_{0}\right]\right) & =-x_{w-1} 2^{w}+\sum_{i=0}^{w-1} x_{i} 2^{i} \\
& =-x_{w-1} 2^{w}+x_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} x_{i} 2^{i} \\
& =-x_{w-1}\left(2^{w}-2^{w-1}\right)+\sum_{i=0}^{w-2} x_{i} i^{i} \\
& =-x_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} x_{i} 2^{i} \\
& =B 2 T_{w}\left(\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]\right)
\end{aligned}
$$

The key property we exploit is that $2^{w}-2^{w-1}=2^{w-1}$. Thus, the combined effect of adding' a bit of weight -2^{w} and of converting the bit having weight -2^{w-1} to be one with wélght't 2^{w-1} is to préserve the original numéric value.

Show that each of the forllowing bit vectors is a twô's-complement representation of -5 by applying Equation 2.3:
A. [1011]
B. [11011]
C. [111011]

Observe that the second and third bit vectors can be derived from the first by sign extension.

One point wotth making is that the relative order of conversion from one data size to another and between unsigned and signed can affect the behavior of a program. Consider the following code:

```
short sx = -12345; ' /* -12345 */
unsigned uy = sx; /* Mystery! */
printf("uy = %u:\t", uy);
show_byte's((byte_pointer) &uy, sizeof(unsigned));
```

When run on a big-endian machine, this code causes the following output to be printed:

```
uy = 4294954951: ff ff cf c7
```

This shows that, when converting from short to unsigned, the program first changes the size and then the type. That is, (unsigned) sx is equivalent to (unsigned) (int) sx, evaluating to $4,294,954,951$, not (unsigned) (unsigned short) sx , which evaluates to 53,191 . Indeed, this convention is required by the C standards.

Consider the following C functions:

```
int fun1(unsigned word) {
    return (int) ((word << 24) >> 24);
}
int fun2(unsigned word) {
    return ((int) word << 24) i> 24;
}
```

Assume these are executed as a 32-bit program on a machine that uses two'scomplement arithmetic. Assume also that right shifts of signed values are pef. formed arithmetically, while right shifts of unsigned values are performed logically.
A. Fill in the following table showing the effect of these functions for several example arguments. You will find it more convenient to work with a hexadecimal representation. Just remember that hex digits 8 through F have, their most significant bits equal to 1 .

w	fun1 (w)	fun2(w)
0x00000076	-	-
0x87654321	-	
0x000000C9	-	-
0xEDCBA987	-	

B. Describe in words the useful computation each of these functions performs.

2.2.7 Truncating Numbers

Súppose that, rather than extending a value with extra bits, we redučé the number of bits répresenting a number. This occurs, for example, in the following code:

```
int x = 53191;
short sx = ('short) x́; /**'12345 */
int y ='s'sx; * 1'1/** -12345 *'/
```

Casting x to be' short will truncate a 32-bit int to a 16-bit short. As we saw before, this 16 -bit pattern' is' the two's-complement representation of $-12,345$. When casting this back to int, sign extension will set the high-òrder 16 bits to ones, yielding the 32-bit two's-complement'representation of $-12,345$.

When truncating a w^{4}-bit number $\vec{x}=\left[x_{w-1}, x_{w-2}, \ldots, x_{0}^{\prime \prime *}\right]$ to a k-bit number, we drop' the highrorder $w-k$ bits, giving a bit vector $\vec{x}^{\prime}=\left[x_{k-1}, x_{k-2}, \ldots, x_{0}\right]$. Truncating a number can alter its value-a form of overflow. For an unsigned number, we can readily characterize the numeric value that will result.

PRINCIPLE: Truncation of an unsigned number
Let \vec{x} be the bit vector $\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]$, and let \vec{x}^{\prime} be the result of, truncating it to k bits: $\vec{x}^{\prime}=\left[x_{k-1}, x_{k-2}, \ldots, x_{0}\right]$. Let $x=B 2 \dot{U}_{w}^{\prime}(\vec{x})$ and $x^{\prime}=B 2 U_{k}\left(\vec{x}^{\prime}\right)$. Then $x^{\prime}=x \bmod 2^{k}$.

The intuition behind this principle is simply that all of the bits that were truncated have weights of the form' 2^{i}, where $i \geq k$, and therefore each of these weights reduces to zero under the modulus operation. This is formalized by the following derivation:

Derivatión: Truncation of ân unsigned number
Applying the modulus operation to Equation 2.1 yields

$$
\begin{aligned}
B 2 U_{w}\left(\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]\right) \bmod 2^{k} & =\left[\sum_{i=0}^{w-1} x_{i} 2^{i}\right] \bmod 2^{k} \\
& =\left[\sum_{i=0}^{k-1} x_{i} 2^{i}\right] \bmod 2^{k} \\
& =\sum_{i=0}^{k-1} x_{i} 2^{i} \\
& =B 2 U_{k}\left(\left[x_{k-1}, x_{k-2}, \ldots, x_{0}\right]\right)
\end{aligned}
$$

In this derivation, we make use of the property that $2^{i} \bmod 2^{k}=0$ for any $i \geq k$.

A similar property holds for truncating a two's-complement number, except that it then converts the most significant bit into a sign bit:

PRINCIPLE: Truncation of a two's-complement number

Let \vec{x} be the, bit vector $\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]$, and let ${ }_{1}^{\prime} x$ be the result of truncating it to k bits: $\vec{x}^{\prime}=\left[x_{k-1}, x_{k-2}, \ldots, x_{0}\right]$. Let $x_{1}=B 2 T_{w}(\vec{x})_{s}$, and $x^{\prime}=B 2 T_{k}(\vec{x})$. Thẹn $x^{\prime}=U 2 T_{k}\left(x \bmod 2^{k}\right)$.

In this formulation, $x \bmod 2^{k}$ will be a number between 0 and $2^{k}-1$. Applying function $U 2 T_{k}$ to it will have the effect of converting the most significant bit x_{k-1} from having, weight 2^{k-1} to having weight -2^{k-1}. We can see this with the example of converting value $x=53$, 191. from int to short. Since $2^{16}=65,536 \geq x$, we have $x \bmod 2^{16},=x$.. But when we convert this number, to a 16 -bit two's-complement number, we get $x^{\prime}=53 ; 191-65,536=-12,345$, ;
DERIVATION: Truncation of a atwo's-complement number
Using a similar argument to the one we used for truncation of an unsigned number shows that

$$
B 2 T_{w}\left(\left[x_{w-1}, x_{w-2}, \ldots, x_{0} x_{0}\right] \bmod 2^{k}=B 2 U_{k}\left(\left[x_{k-1}, x_{k-2}, \ldots, x_{0}\right]\right)\right.
$$

That is, $x \bmod 2^{k}$ can be represented by an unsigned number having bit-level representation' $\left[x_{\dot{k}-1}, x_{k-2}, \ldots, x_{0}\right]$. Converting this to a two's-complement numbet gives $x^{\prime}=U 2 T_{k}\left(x \bmod 2^{k}\right)$.

Summarizing, the effect of truncation for unsigned numbers is

$$
\begin{align*}
& \quad B 2 U_{k}\left(\left[x_{k-1}, x_{k-2}, \ldots, x_{0}\right]\right)=B 2 U_{w}\left(\left[x_{w-1}, x_{w-2} ; \ldots, x_{0}\right]\right) \bmod 2^{k} \tag{2.9}\\
& \mathrm{l}^{\prime} \\
& \text { while the effect for two's-complement numbers is }
\end{align*}
$$

$$
\begin{equation*}
B 2 T_{k}\left(\left[x_{k-1}, x_{k-2}, \ldots, x_{0}\right]\right)=U 2 T_{k}\left(B 2 U_{w}\left(\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]\right) \bmod 2^{k}\right) \tag{2.10}
\end{equation*}
$$

Practice Problem 2. 24 (solutionnage 20)

Suppose we trunçate a 4-bit value (represented by hex digits 0 through F) to a 3bit value (represented as hex digits 0 through 7.) Fill in the table below showing the effect of this truncation for some cases, in terms of the unsigned and two'scomplement interpretations of those bit patterns.

Hex		Unsigned		Two's complement	
Original	Truncated	Original	Truncated	Original	Truncated
0	0	0	-	0	
2	2	2	-	2	
9	1	9	\square	-7	
B	3	11		-5	
F	7	15	" ${ }^{+}$	-1	-

Explain how Equations 2.9 and 2.10 apply to these cases.

2.2.8 Advice on Signed versus Unsigned

As we have seen, the implicit casting of signed to unsigned leads to some nonintuitive behavior. Nonintuitive features often lead to program bugs, and ones involving the nuances of implicit casting can be especially difficult to see. Since the casting takes place without any clear indication in the code, programmers often overlook its effects.

The following two practice problems illustrate some of the subtle errors that can arise due to implicit casting and the unsigned data type.

Practice Problem 225 solution page 151)

Consider the following code that attempts to sum the elements of an array a, where the number of elements is given by parameter length:

```
/* WARNING: This is buggy code */
float sum_elements(float a[], unsigned length) {
    int i;
    float\cdotresult = 0;
    for (i = 0; i <= length-1; i++)
        result += a[i];
    return result;
}
```

When run with argument length equal to 0 , this code should return 0.0 . Instead, it encounters a memory error. Explain why this happens. Show how this code can be corrected.

You are given the assignment of writing a function that determines whether one string is longer than another. You decide to make use of the string library function strlen having the following declaration:

```
/* Prototype for library function strlen */
```

size_t strlen(const char *s);

Here is your first attempt at the function:

```
/* Determine whether string s is longer than string t */
/* WARNING: This function is buggy */
int strlonger(char *s, char *t) {
    return strlen(s) - strlen(t) > 0;
}
```

When you tèst this on some sample data, things do not seem to work quite right. You investigate further and determine that, when compiled as a 32-bit
program, data type size_t is defined (via typedef) in header file stdio. h to be unsigned.
A. For what caşes will this function produce an incorrect result?
B. Explain how' this incorrrect resûlt comẻs about.
$\dot{\text { C. }}$. Show how to fix the code so that it will work reliably.

We have seen multiple ways in which the subtle features of unsigned arithmetic, and especially the implicit conversion of signed to unsigned, can lead to errors or vulnerabilities. One way to avoid such bugs is to never use unsigned numbers.' In fact, few languages other than C support unsigned integers. Apparently, these other' language designers viewed them as morre trouble than they are worth. For example, Java supports only signed integers, and it requires that they be implemented with two's-complement arithmetic. The normal right shift operator \gg is guaranteed to perform an arithmetic shift. The special operator' \ggg is defined to perform a logical right shift.

Unsigned values are very useful when we want to think of words as just collections of bits with no numeric interpretation. This occurs, for example, when pácking a word with flags describing various Booleả̉̉̉ conditions. Addresses are naturally unsigned, so systems programmers find unsigned ${ }^{\prime t}$ types to be helpful. Unsigned values are also useful when implementing mathematical packages for modular arithmetic and for multiprecision arithmetic, in which numbers are represented by arrays of words.

2.3 Integer Arithmetic

Many beginning programmers are surprised to find that adding two positive numbers can yield a negative result, and that the comparison $x<y$ can yield a different result than the comparison $x-y<0$. These properties are artifacts of the finite nature of;computer arithmetic. Understanding the nuances of computer arithmetic can help programmers write more reliable code.

2.3.1 Unsigned Addition

Consider two nonnegative integers x and y, such that $0 \leq x, y<2^{w}$. Eąch of these values can be represented by a w-bit unsiǵned number. If wé compute'their sum, however, we have a possible range $0 \leq x+y \leq 2^{w+1}-2$. Representing this sum could require $w+1$ bits. For example, Figure 2.21 shows ap plot of the function $x+y$ when x and y have 4-bit representations. The ${ }_{x}$ arguments (shown on the horizontal axes) range from 0 to 15 , but the sum ranges from ' 0 to 30 . The shape of the function is a sloping plane (the function is linear in both dimensions). If we were to maintain the sum as a ($w+1$)-bit number and add it to anothércvalue, we may require $w+2$ bits, and so on. This continued "word size

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits.
inflation" means we cannot place any bound on the word size required to fully represent the results of arithmetic operations. Some programming languages, such as Lisp, actually support arbitrary size arithmetic to allow integers of any size (within the memory limits of the computer, of course.) More commonly, programming languages support fixed-size arithmetic, and hence operations such as "addition" and "multiplication" differ from their counterpart operations over integers.

Let us define the operation ${ }_{w}^{\mathrm{a}}$ for arguments x and y, where $0 \leq x, y<2^{w}$, as the result of truncating the integer sum $x+y$ to be w bits long and then viewing the result as an unsigned number. This can be characterized as a form of modular arithmetic, computing the sum modulo 2^{w} by simply discarding any bits with weight greater than 2^{w-1} in the bit-level representation of $x+y$. For example, consider a 4-bit number representation with $x=9$ and $y=12$, having bit representations [1001] and [1100], respectively. Their sum is 21 , having a 5 -bit representation [10101]. But if we discard the high-order bit, we get [0101], that is, decimal value 5 . This matches the value $21 \bmod 16=5$.

Aside Security vulnerability in getpeername

In 2002, programmers involved in the FreeBSD open-source operatingsystems project realized that their implementation of the getpeername library function had a security vülnerability. A simplified version of their code went something like this:

In this code, we show the prototype for library function memcpy on line 7, which is designed to copy a specified number of bytes n from one region of memory to another r

The function copy_from_kernel, starting at line 14 , is designed to copy some of the data maintained by the operating system kernel to àdesignated region of memory accêssible to the user. Most ${ }^{*}$ of the datả structures maintained by the kernel should not be"readảble by a user, since they may con-s tain sensitive information about"other users and about otheryobs running on the system, but the region shown as kbuf was intended to be one that the user could read. The parameter maxlen is intended to be the length of the buffer allocated by the user and indicated by argument user, dests: The computation at line 16 then makes sure that no more bytes are côpied than"are available in either the sourcee or the destination buffer.

Suppose, however, that some malicious programmer writes code that calls copy_from_kernel"with a negative value of maxlen. Then the minimum computation*on line, 16 will compute this value for len, which will then be passed as the parameter n to memcpy. Note, hổwever, thatt par̂ameter n is declăred"as having data type size_t. This data type is declared (via typedef) in the library file stdio sh. Typically, if is defined to be unsigned for 32 -bit programs and unsigned long for 64 -bit programs. Since argument n is unsigned, memcpy will treatit as a very large pósitive number and âttempt to"copy that many bytes from the Kernel region to the "user's buffer. Copying that many bytes (at least 2^{31}) will not actually work, because the program will encounter invalid àdresses in the procêss, butthe program could read regions of the kernel memoty for which it its not authorized.


```
/*
```

/*

* Illustration of code vulnerability similar to that found in
* Illustration of code vulnerability similar to that found in
 * FreeBSD's simplementation of getpeername()
 * FreeBSD's simplementation of getpeername()
*/
*/
/* Declaration of library function memcpy */*
/* Declaration of library function memcpy */*
void *memcpy(void *dest, void**src, size_t n);
void *memcpy(void *dest, void**src, size_t n);
/* Kernel memory region holding user
/* Kernel memory region holding user
\#definé KSIZE "1024
\#definé KSIZE "1024
char "kbuf [KSIZE];
char "kbuf [KSIZE];
/* Copy at most maxlen bytes from kernel region to user" buffer */
/* Copy at most maxlen bytes from kernel region to user" buffer */
int copy_from\&kernel(void *user_dest, int, maxlen) {
int copy_from\&kernel(void *user_dest, int, maxlen) {
/* Byte count len is minimum of buffer size "and "mdxlen **/
/* Byte count len is minimum of buffer size "and "mdxlen **/
int len = KSIZE** maxleñ ? KSIZE : maxlen;
int len = KSIZE** maxleñ ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
memcpy (user_dest, kbuf, len);
return len;
return len;
}

```
}
```等

Aside . Security vulherability jñ getpeername (continued)"
We can see that this problem arişes due to the mismatch betweeen data types: in one place the length parameter isis signed; in "another place it.is"unsigned. Such mismatches can be source of bugs and, as this example shows, can even lead to secúrity vulnerrabilities. Fortunately, there were no reported cases where a programmer had exploited the vulnerability in FreeBSD. They issued a security advisory "FreeBSD-SA-02:38.signed-error" advising system administrators on how to apply a patch that would remove the vulnerability. The bug"can bé fixed by declaring parameter maxlen to copy_from_kernel to "be of type size_t, to"be consistent with parameter \(n\) of memcpy. We should also declare local variable len \({ }^{2}\) and the returnsvalue to be of type

We can characterize operation \({ }_{w}^{u}\) as follows:
PRINCIPLE: Unsigned addition
For \(x\) and \(y\) such that \(0 \leq x, y<2^{w}\) :
\[
x+_{w}^{u} y= \begin{cases}x+y, & x+y<2^{w} \quad \text { Normal } \tag{2.11}\\ x+y-2^{w}, & 2^{w} \leq x+y<2^{w+1} \quad \text { Overflow }\end{cases}
\]

The two cases of Equation 2.11 are illustrated in Figure 2.22, showing the sum \(x+y\) on the left mapping to the unsigned \(w\)-bit sum \(x{ }_{w}^{u} y\) on the right. The normal case preserves the value of \(x+y\), while the overflow case has the effect of decrementing this sum by \(2^{w}\).

\section*{DEŔIVATION: Unsigned addition}

In general, we can see that if \(x+y<2^{w}\), the leading bit in the \((w+1\))-bit representation of the sum will equal 0 , and hence discarding it will not change the numeric value. On the other hand, if \(2_{s}^{w} \leq x+y<2^{w+1}\), the leading bit in the (\(w+1\))-bit representation of the sum will equal 1 , and hence discarding it is equivalent to subtracting \(2^{w}\) from the sum.

An arithmetic operation is said to overflow when the full integer result cannot fit within the word size limits of the data type. As Equation 2.11 indicates, overflow

Figure 2.22 Relation between integer addition and unsigned addition. When \(x+y\) is greater than \(2^{w}-1\), the sum overflows.

Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed modulo 16.
occurs when the two operands sum to \(2^{w}\) or more. Figure 2.23 shows a plot of the unsigned addition function for word size \(w=4\). The sum is computed modulo \(2^{4}=16\). When \(x+y<16\), there is no overflow, and \(x+_{4}^{u} y\) is simply \(x+y\). This is shown as the region forming a sloping plane labeled "Normal." When \(x+y \geq 16\), the addition overflows, having the effect of decrementing the sum by 16 . This is shown as the region forming a sloping plane labeled "Overflow."

When executing C programs, overflows are not signaled as errors. At times, however, we might wish to determine whether or not overflow has occurred.

PRINCIPLE: Detecting overflow of unsigned addition
For \(x\) and \(y\) in the range \(0 \leq x, y \leq U M a x_{w}\), let \(s \doteq x+{ }_{w}^{u} y\). Then the computation of \(s\) overflowed if and only if \(s<x\) (or equivalently, \(s<y\)).

As an illustration, in our earlier example, we saw that \(9+_{4}^{\mathrm{u}} 12=5\). We can see that overflow occurred, since \(5<9\).

DERIVATION: Detecting overflow of unsigned addition
Observe that \(x+y \geq x\), and hence if \(s\) did not overflow, we will surely have \(s \geq x\).
On the other hand, if \(s\) did overflow, we have \(s=x+y-2^{w}\). Given that \(y<2^{w}\), we have \(y-2^{w} \leqslant 0\), and hence \(s=x+\left(y-2^{w}\right)<\dot{x}\).

\section*{}

Write a function with the following prototype:
/* Determine whether arguments can be added without overflow */
int uadd_ok(unsigned \(x\), unsigned \(y\));
This function should return 1 if arguments \(x\) and \(y\) can be added without causing overflow.
\(\jmath\)
\(1^{1}\)
Modular additiorforms a mathematical-stiucture knownas an abelian group, named after the Norwegian'mathematician Niels Henrik Abel (1802-1829). That is, it is commutative (that's where' the "abelian" part comes in) and associative; it has an identity element 0 , and every element has an additive inverse. Let us consider the set of \(w\)-bit unsigned numbers with addition operation \(+_{w}^{u}\). For every value \(x\), there must be some value \(-_{w}^{u} \ddot{x}\) such that \(-_{w}^{u} x+{ }_{w}^{u} x=0\). This additive inverse operation can be characterized as follows:

\section*{PRINCIPLE: Unsigned negation}

For any number \(x\) such that \(0 \leq x<2^{w}\), its \(w\)-bit unsigned negation \(-{ }_{w}^{u} x\) is given by the following:
\[
-_{w}^{\mathrm{u}} x= \begin{cases}x, & x=0 \tag{2.12}\\ 2^{w}-x, x & x>0\end{cases}
\]

This result can reeadily be derived by case analysis:
DERIVATION: Unsigned negation
When \(x=0\), the additive inverse is clearly, For \(x>0\), consider, the value \(2^{w}-x\). Observe that this number is in the range \(0<2^{w}-x<2^{w}\). We can also see that \(\left(x+\dot{2}^{w}-x\right) \bmod 2^{w}=2^{w} \cdot \bmod 2^{w}=0\). Hence it is the inverse of \(x\) under \(+_{w}^{u}\).

\section*{Practice Problem 228 (solution page 152}

We can represent a bit pattern of length \(w=4\), with a single hex digit. For an unsigned interpretation of these digits, use Equation 2.12 to fill in the following table giving the values and the bit representations (in hex) of the unsigned additive inverses of the digits shown.

\subsection*{2.3.2 Two's-Complement Addition}

With two's-complement addition, we must decide what to do when the result is either too large (positive) or too small (negative) to represent. Given integer values \(x\) and \(y\) in the range \(-2^{w-1} \leq x, y \leq 2^{w-1}-1\), their sum is in the range \(-2^{w} \leq x+y \leq 2^{w}-2\), potentially requiring \(w+1\) bits to represent exactly. As before, we avoid ever-expanding data sizes by truncating the representation to \(w\) bits. The result is not as familiar mathematically as modular addition, however. Let us define \(x+{ }_{w}^{t} y\) to be the result of truncating the integer sum \(x+y\) to be \(w\) bits long and then viewing the result as a two's-complement number.

\section*{PRINCIPLE: Two's-complement addition}

For integer values \(x\) and \(y\) in the range \(-2^{w-1} \leq x, y \leq 2^{w-1}-1\) :
\[
x+_{w}^{\mathrm{t}} y=\left\{\begin{array}{llr}
x+y-2^{w}, & 2^{w-1} \leq x+y & \text { Positive overfiow } \tag{2.13}\\
x+y, & -2^{w+-1} \leq x+y<2^{w-1} \quad \text { Normal } \\
x+y+2^{w}, & x+y<-2^{w-1} & \text { Negative overflow }
\end{array}\right.
\]

This principle is illustrated in Figure 2.24, where the sum \(x+y\) is shown on the left, having a value in the range \(-2^{w} \leq x+y \leq 2^{w}-2\), and the result of truncating the sum to a \(w\)-bit two's-complement number is shown on the right. (The labels "Case 1 " to "Case 4" in this figure are for the case analysis of the formal derivation of the principle.) When the sum \(x+y\) exceeds \(T M a x_{w}\) (case 4), we say that positive overflow has occurred. In this case, the effect of truncation is to subtract \(2^{w}\) from the sum. When the sum \(x+y\) is less thar \({ }^{\text {TM }} \operatorname{Min}_{w}\) (case 1), we say that negative overflow has occurred. In this case, the 'effect of truncation is to add \(2^{\text {w }}\) to the sum.

The \(w\)-bit two's-complement sum of two numbers has the exact same bit-level representation as the unsigned sum. In fact, most computers use the same machine instruction to perform either unsigned or signed addition.

DERIV́ATION: Two's-čomplement ąddition
Since twQ's-complement addition has the exact same bit-level representation as unsigned addition, we can characterize the operation \(+_{w}^{\dagger}\) as one of converting its arguments to unsigned, performing unsigned addition, and then converting back to two's complement:

Figure 2.24
Relation between integer and two's-complement addition. When \(x+y\) is less than \(-2^{w-1}\), there is a negative overflow. When it is greater than or equal to \(2^{w-1}\), there is a positive overflow.

\[
\begin{equation*}
x+{ }_{w}^{\mathrm{t}} y=U 2 T_{w}\left(T 2 U_{w}(x)+{ }_{w}^{\mathrm{u}} T 2 U_{w}(y)\right) \tag{2.14}
\end{equation*}
\]

By Equation 2.6, we can write \(T 2 U_{w}(x)\) as \(x_{w-1} 2^{w}+x\) and \(T 2 U_{w}(y)\) as \(y_{w-1} 2^{w}+y\). Using the property that \(+_{w}^{\mathrm{u}}\) is simply addition modulo \(2^{w}\), along with the properties of modular addition, we then have
\[
\begin{aligned}
x+_{w}^{\mathrm{t}} y & \risingdotseq U 2 T_{w}\left(T 2 U_{w}(x)+_{w}^{\mathrm{u}} T 2 U_{w}(y)\right) \\
& =U 2 T_{w}\left[\left(x_{w-1} 2^{w}+x+y_{w-1} 2^{w}+y\right) \bmod 2^{w}\right] \\
& =U 2 T_{w}\left[(x+y) \bmod 2^{w}\right]
\end{aligned}
\]

The terms \(x_{w-1} 2^{w}\) and \(y_{w-1} 2^{w}\) drop out since they equal 0 modulo \(2^{w}\).
To better understand this quantity, let us define \(z^{\prime}\) as the integer sum \(z \doteq x+y\), \(z^{\prime}\) as \(z^{\prime} \doteq z \bmod 2^{w}\), and \(z^{\prime \prime}\) as \(z^{\prime \prime} \doteq U 2 T_{w}\left(z^{\prime}\right)\). The value \(z^{\prime \prime}\) is equal to \(x+_{w}^{\mathrm{t}} y\). We can divide the analysis into four cases as illustrated in Figure 2.24:"
1. \(-2^{w} \leq z<-2^{w-1}\). Then we will have \(z^{\prime}=z+2^{w}\). This gives \(0 \leq z^{\prime}<-2^{w-1}+\) \(2^{w}=2^{w-1}\). Examining Equation 2.7 , we see that \(z^{\prime}\) is in the range such that \(z^{\prime \prime}=z^{\prime}\). This is the case of negative overflow. We have added two negative numbers \(x\) and \(y\) (that's the only way we can have \(z<-2^{w-1}\)) and obtained a nonnegative result \(z^{\prime \prime}=x+y+2^{w}\).
2. \(-2^{w-1} \leq z<0\). Then we will again have \(z^{\prime}=z+2^{w}\), giving \(-2^{w-1}+2^{w}=\) \(2^{w-1} \leq \overline{z^{\prime}}<2^{w}\). Examining Equation 2.7 , we see that \(z^{\prime}\) is in such a range that \(z^{\prime \prime}=z^{\prime}-2^{w}\), and therefore \(z^{\prime \prime}=z^{\prime}-2^{w},=z+2^{w}-2^{w}=z\). That is, our two'scomplement sum \(z^{\prime \prime}\) equals the integer \(\operatorname{sum} x+y\).
3. \(0 \leq z<2^{w-1}\). Then we will have \(z^{\prime}=z\), giving \(0 \leq z^{\prime}<2^{w-1}\), and hence \(z^{\prime \prime}=\) \(z^{\prime}=z\). Again, the two's-complement sum \(z^{\prime \prime}\) equals the integer sum \(x+y\).
4. \(2^{w-1} \leq z<2^{w}\). We will again havé \(z^{\prime}=z\), giving \(2^{w-1} \leq z^{\prime}<2^{w}\). But in this range we have \(z^{\prime \prime}=z^{\prime}-2^{w}\), giving \(z^{\prime \prime}=x+y^{*}-2^{w}\). This is the case of positive overflow. We have added two positive numbers \(x\) and \(y\) (that's the only way we can have \(z \geq 2^{w-1}\)) and obtained a negative result \(z^{\prime \prime}=x+y-2^{w}\).
\begin{tabular}{rrrrr}
\hline\(x\) & \(y\) & \(x+y\) & \(x+\frac{4}{4} \dot{y}\) & Case \\
\hline-8 & -5 & -13 & 3 & 1 \\
{\([1000]\)} & {\([1011]\)} & {\([10011]\)} & {\([0011]\)} & \\
-8 & -8 & -16 & 0 & 1 \\
{\([1000]\)} & {\([1000]\)} & {\([10000]\)} & {\([0000]\)} & \\
-8 & 5 & -3 & \(w-3\) & 2 \\
{\([1000]\)} & {\([0101]\)} & {\([11101]\)} & {\([1101]^{*}\)} & \\
2 & 5 & 7 & 7 & 3 \\
{\([0010]\)} & {\([0101]\)} & {\([00111]\)} & {\([0111]\)} & \\
5 & 5 & 10 & -6 & 4 \\
{\([0101]\)} & {\([0101]\)} & {\([01010]\)} & {\([1010]\)} & \\
\hline
\end{tabular}

Figure 2.25 Two's-complement addition examples. The bit-level representation of the 4-bit two's-complement sum'can be obtained by performing binary addition of the operands and truncating the result to 4 , bits.

As illustrations of two's-complement addition, Figure 2.25 shows some examples when \(w=4\). Each example is labeled by the case to which it corresponds in the derivation of Equation 2.13. Note that \(2^{4}=16\); and hence negative overflow yields a result 16 more than the integer sum, and positive overflow yields a result 16 less. We include bit-level representations of the operands and the result. Observe that the result can be opbtained by performing binary addition of the operandș and truncating the result to 4 bits.

Figure 2.26 illustrates two's-complement addition for word size \(w=4\). The operands range between -8 and 7 . When \(x+y<-8\); two's-complement addition has a negative overflow, causing the sum to be incremented by 16 . When \(-8 \leq\) \(x+y<8\), the addition yields \(x+y\). When \(x+y \geq 8\), the addition has a positive overflow, causing the sum to be decremented by.16. Each of these three ranges forms a sloping plane.in the figure.

Equation 2.13 also lets us identify the cases where overflow has occurred:
PRINCIPLE: Detecting overflow in two's-complement addition
For \(x\) and \(y\) in the range \(\operatorname{TMin}_{w} \leq x, y \leq T M a x\), , let \(s \doteq x+{ }_{w}^{t} y\). Then the computation of \(s\) has had positive overflow if and only if \(x_{i}>0\) and \(y>0\) but \(s \leq 0\). The computation has had negative overflow if and only if \(x<0\) and \(y<0\) but \(s \geq 0\).

Figure 2.25 shows several illustrations of this principle for \(w=4\). The first entyy shows a case of negative overflow, where two negative numbers sum to a positive one. The final entry shows a case of positive overflow, where two positive numbers sum to a negative one.

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a negative overflow when \(x+y<-8\) and a positive overflow when \(x+y \geq 8\).

DERIVATION: Detecting overflow of two's-complement addition
Let us first do the analysis for positive overflow. If both \(x>0\) and \(y>0\) but \(s \leq 0\), then clearly positive overflow has occurred. Conversely, positive overflow requires (1) that \(x>0\) and \(y>0\) (otherwise, \(x+y<\operatorname{TMax}_{w}\)) and (2) that \(s \leq 0\) (from Equation 2.13). A similar set of arguments holds for negative overflow.

\section*{Practice Problem 229 (solutompage 122) 2wnw} Fill in the following table in the style of Figure 2.25. Give the integer values of the 5-bit arguments, the values of both their integer and two's-complement sums, the bit-level representation of the two's-complement sum, and the case from the derivation of Equation 2:13.
\begin{tabular}{ccccc}
\(x\) & \(y\) & \(x+y\) & \(x+5 y\) & Case \\
\hline\([10100]\) & - & - & - \\
\hline 10001\(]\) & & - \\
\hline
\end{tabular}

Write a function with the following prototype:
/* Determine whether arguments can be added without overflow */ = int tadd_ok(int \(x\), int \(y\));

This function should return 1 if arguments \(x\) and \(y\) can be added without causing overflow.

\section*{}

Your coworker gets impatient with your analysis of the overflow' conditions for two's-complement addition and presents you with the following implementation' of tadd_ok:
```

/* Determine whether arguments can be, added without overflow */
/* WARNING: This code is buggy. */
int! tadd_ok(int x, int y) {
int sum = x+y;
retûrn (sum-x == y) \&\& (sum-y == x);
}

```

You look at the code and laugh. Explain why.

\section*{Practice Problem 232 (solution page 153)}

You are assigned the task of writing code for a function tsub_ok, with arguments \(x\) and \(y\), that will return 1 if computing \(x-y\) does not cause overflow. Having just written the code for Problem 2.30, you write the following:
/* Determine whether arguments can be subtracted without overflow */
/* WARNING: This code is buggy. */
int tsub_ok(int \(x\), int \(y\)) \{
```

    return tadd_ok(x, -y);
    }

```

For what values of x and y will this function give incorrect results? Writing a correct version of this function is left as an exercise (Problem 2.74).

\subsection*{2.3.3 Two's-Complement Negation}

We can see that every number \(x\) in the range \(\operatorname{TMin}_{w} \leq x \leq T M a x_{w}\) has an additive inverse under \({ }^{+}{ }_{w}\), which we denote \(-_{w}^{t} x\) as follows:

PRINCIPLE: Two's-complement negation
For \(x\) in the range TMin \(_{w} \leq x \leq T M a x_{w}\), its two's-complement negation \(-_{w}^{t} x\) is given by the formula
\[
-_{w}^{:} x= \begin{cases}\operatorname{TMin}_{w}, & x=\operatorname{TMin}_{w} \tag{2.15}\\ -x, & x>\operatorname{TMin}_{w}\end{cases}
\]

That is, for \(w\)-bit two's-complement addition, \(T_{M i n}^{w}\) is its own additive inverse, while any other value \(x\) has' \(-x\) as its additive inverse.

DERIVATION:. Two's-complement negation
Observe that \(\operatorname{TMin}_{w}+\) TMin \(_{w}=-2^{w-1}+-2^{w-1}=-\hat{2}^{w}\). This would cause negative overflow, and hence \(\operatorname{TMin}_{w}{ }^{t}{ }_{w}^{t} \operatorname{TMin}_{w}=-2^{w}+2^{w}=0\). For values of \(x\) such that \(x>{ }^{\prime}\) TMin \(_{w}\), the value \(-x\) can also be represented as a \(w\)-bit two's-complement number, and their sum will be \(-x+x=0\).

\section*{}

We can represent a bit pattern of length \(w=4\) with a single hex digit. For a two'scomplement interpretation of these digits, fill in the following table to determine the additive inverses of the digits shown:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\(x\)} & \multicolumn{2}{|c|}{\({ }_{-1}^{-\frac{1}{4} x}\)} \\
\hline Hex & Decimal & Decimal & Hex \\
\hline 0 & -- & - & - \\
\hline 5 & ----- & - & \\
\hline 8. & - & - & \\
\hline D & - - - - - & --- & \\
\hline F & & & \\
\hline
\end{tabular}

What do yot observe'about the'bit patterns generated by two's-complement and unsignéd (Problem 2.28) negation?
Web Aside DATA:TNEG Bitalevel' representation of two's-complement negation
There are several clever ways to determine the two's-complement negation of a value represented at the bit level. The following two techniquet are toth useful, suich as when one encounters the value 0xffffffe when debugging a program, and they lend insight into the nature of the two's-complement representation.
Ờne techníque for performing twô's-complement nễgation ant the bit level is to complement the bits "and then increment the result. In C , we can state that for any integer valùe \(x\), computing the expressions \({ }^{-} x\) and \(\sim x+\infty\) will give identical results.
Here are some examples with ă 4 -bit word \({ }^{*}\) sizee:

For our earlier example, we know that the complement of \(0 x f\) is \(0 \times 0\) and the complement of \(0 \times a_{\text {n. }}\)

A second way to perform two's-complement negation of number a is based onsplitting the bit 4 vector into two parts. Let \(k\) be the position of the rightmost 1 , so the bit-level representation of \(x\) has the form \(\left[x_{w-1}, x_{w-2}, \ldots, x_{k+1}, 1,0, \ldots 0\right]\). (This is possible as fongas \(x \neq 0\).) The negation is then written
 bit position \(k\).

We illustrate this idea with some Abitnumbers, where we highlightherightmost pattern \(1 \times 0,0,0\) innitalics:
,
,

\subsection*{2.3.4 Unsigned Multiplication}

Integers \(x\) and \(y\) in the range \(0 \leq x, y \leq 2^{w}-1\) can be represented as \(w\)-bit unsigned numbers, but their product \(x \cdot y\) can range between 0 and \(\left(2^{w}-1\right)^{2}=\) \(2^{2 w}-2^{w+1}+1\). This could require as many as \(2 w\) bits to represent. Instead, unsigned multiplication in \(C\) is defined to yield the \(w\)-bit value given by the low-order \(w\) bits of the \(2 w\)-bit,integer product. Let us denote this yalue as \(x{ }_{w}{ }_{w}^{u} y\).

Truncating an unsigned number to \(w\) bits is equivalent to computing its value modulo \(2^{w}\), giving the following:

PRINCIP,LE: Unsigned multiplication
For \(x_{,}\)and \(y\) such that \(0 \leq x, y \leq U M a x_{i}\);
\[
\begin{equation*}
x *_{w}^{\mathrm{u}} y=(x \cdot y) \bmod 2^{w} \tag{2.16}
\end{equation*}
\]

\subsection*{2.3.5 Two's-Complement Multiplication}

Integers \(x\) and \(y\) in the range \(-2^{w-1} \leq x, y \leq 2^{w-1}-1\) can be represented as \(w\)-bit two's-complement numbers, but their product \(x \cdot y\) can range between \(-2^{w-1}\). \(\left(2^{w-1}-1\right)=-2^{2 w-2}+2^{w-1}\), and \(-2^{w-1} s-2^{w-1}=2^{2 w-2}\). This could require as many as \(2 w\) bits to represent in two's-complement form. Instead, signed multiplication in C generally is performed by truncating the \(2 w\)-bit product to \(w\) bits. We denote this value as \(x \psi_{\mu}^{1} y_{y_{x}^{x}}\) Truncating a two's-complement number to \(w\) bits is equivalent to first computing its value modulo \(2^{w}\) and then converting from unsigned to two's complement, giving the following:

PRINCIPLE: Two's-complement múltiplication
For \(x\) and \(y\) such that TMin \(_{w}^{s} \leq x, y \leq T M a x_{w}\) :
\[
\begin{equation*}
x *_{w}^{\mathrm{t}} y=U 2 T_{w}\left((x \cdot y) \bmod \cdot 2^{w}\right) \tag{2.17}
\end{equation*}
\]

We claim that the bit-levèl representation of the product operation is identical for both unsigned and two's-complement multiplication, as stated by the following principle:

PRINCIPLE: Bit-level equivalence of unsigned and two's-complement multiplication
Let \(\vec{x}\) and \(\vec{y}\) be bit vectors'of length \(w\). Define integers \(x\) and \(y\) as the values represented by these bits in two's-complement form: \(x=B 2 T_{w}(\vec{x})\) and \(y=B 2 T_{w}(\vec{y})\). Define nonnegative integers \(x^{\prime}\) and \(y^{\prime}\) as the values represented by these bits in unsigned form: \(x^{\prime}=B 2 U_{w}(\vec{x})\) and \(y^{\prime}=B 2 U_{w}(\vec{y})\). Then
\[
T 2 B_{w}\left(x *_{w}^{\prime} y\right)^{\prime}=U 2 B_{w}\left(x^{\prime} *_{w}^{u} y^{\prime}\right)
\]

As illustrations, Figure 2.27 shows the results of multiplying different 3-bit numbers. For each pair of bit-level' operands, we perform both unsigned and two's-complement multiplication, yielding 6-bit products, and then truncate these to 3 bits. The unsigned truncated product always equals \(x \cdot y \bmod 8\). The bitlevel representations of both truncated products are identical for both unsigned and two's-complement multiplication, even though the full 6-bit representations
differ.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Mode & \multicolumn{2}{|r|}{\(x\)} & \multicolumn{2}{|r|}{\(y\)} & \multicolumn{2}{|r|}{\(x^{1} \cdot y\)} & \multicolumn{2}{|l|}{Truncated \(x \cdot y\)} \\
\hline Unsigned & 5 & [101] & 3 & [011] & 15 & [001111] & 7 & [111] \\
\hline Two's complement & -3 & [101] & 3 & [011] & -9 & [110111] & -1 & [111] \\
\hline Unsigned & 4 & [100] & & [111] & 28 & [011100] & 4 & [100] \\
\hline Two's complement & -4 & [100] & -1 & [111] & 4 & [000100] & -4 & [100] \\
\hline Unsigned & 3 & [011] & 3 & [011] & 9 & -[001001]. & 1 & [001] \\
\hline Two's complement & & [011] & 3 & [011] & - & [001001] & 1 & [001] \\
\hline
\end{tabular}

Figure 2.27 Three-bit unsigned and two's-complement multiplication examples: Although the bit-level representations of the full products may differ, those of the truncated products are identical.

DÉRIVATION: Bit-level equivalence of unsigned and two's-complement multiplication
From Equation 2.6, we have \(x^{\prime}=x+x_{w-1} 2^{w}\) and \(y^{\prime}=y+y_{w-1} 2^{w}\). Computing the product of these values modulo \(2^{w}\) gives the following:
\[
\begin{align*}
\left(x^{\prime} \cdot y^{\prime}\right) \bmod 2^{w} & =\left[\left(x+x_{w-1} 2^{w}\right) \cdot\left(y+y_{w-1} 2^{w}\right)\right] \bmod 2^{w} \tag{2.18}\\
& =\left[x \cdot y+\left(x_{w-1} y+y_{w-1} x\right) 2^{w}+x_{w-1} y_{w-1} 2^{2 w}\right] \bmod 2^{w} \\
& =(x \cdot y) \bmod 2^{w}
\end{align*}
\]

The terms with weight \(2^{w}\) and \(2^{2 w}\) drop out due to the modulus operator. By Equation 2.17, we have \(x *_{w}^{\mathrm{t}} y=U 2 T_{w}\left((x: y) \bmod 2^{w}\right)\). We can apply the operation \(T 2 U_{w}\) to both sides to get
\[
T 2 U_{w}\left(x *_{w}^{\mathrm{t}} y\right)=T 2 U_{w}\left(U 2 T_{w}\left((x \cdot y) \bmod 2^{w}\right)\right)=(x \cdot y) \bmod 2^{w}
\]

Combining this result with Equations 2.16 and 2.18 shows that \(T 2 U_{w}\left(x *_{w}^{l} y\right)=\) \(\left(x^{\prime} ; y^{\prime}\right) \bmod 2^{w}=x^{\prime} *_{w}^{u} y^{\prime}\). We can then apply \(U 2 B_{w}\) to both sides to get
\[
U 2 B_{w}\left(T 2 U_{w}\left(x *_{w}^{\prime} y\right)\right) \doteq T_{3} 2 B_{w}\left(x *_{w}^{t} y\right)=U 2 B_{w}\left(x^{\prime} *_{w}^{u} y^{\prime}\right)
\]

Fill in the following table showing the results of multiplying different 3-bit numbers, in the style of Figure 2.27:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mode & \multicolumn{2}{|c|}{\(x\)} & \multicolumn{3}{|c|}{\(y\)} & \multicolumn{3}{|r|}{\(x \cdot y\)} & \multicolumn{2}{|r|}{Truncated \(x \cdot y\)} \\
\hline Unsigned & & [110] & & & [110] & & & & & \\
\hline Two's complement & - & [110] & & & [110] & & & & & \\
\hline
\end{tabular}

\section*{}

You are given the assignment to develop code for a function tmult_ok that will determine whether two arguments can be multiplied without causing overflow. Here is your solution:
```

/* Determine whether arguments can be multiplied without overflow */
int tmult_ok(int x, int y) {
int p = x*y;
/* Either x is zero, or dividing p by x gives y */
return !x || p/x == y;
}

```

You test this code for a number of values of \(x\) and \(y\), and it seems to work properly. Your coworker challenges you, saying, "If I can't use subtraction to test whether addition has overflowed (see Problem 2.31), then how can you use division to test whether multiplication has overflowed?"

Devise a mathematical justification of your approach, along the following lines. First, argue that the case \(x=0\) is handled correctly. Otherwise, consider \(w\)-bit numbers \(x(x \neq 0), y, p\), and \(q\), where \(p\) is the result of performing two'scomplement multiplication on \(x\) and \(y\), and \(q\) is the result of dividing \(p\) by \(x\).
1. Show that \(x \cdot y\), the integer product of \(x\) and \(y\), can be written in the form \(x \cdot y=p+t 2^{w}\), where \(t \neq 0\) if and only if the computation of \(p\) overflows.
2. Show that \(p\) can be written in the form \(p=x \cdot q+r\), where \(|r|<|x|\).
3. Show that \(q=y\) if and only if \(r=t=0\).

For the case where data type int has 32 bits, devise a version of tmult_ok (Problem 2.35) that uses the 64-bit precision of data type int64_t, withóut using division.

\section*{}

You are given the task of patching the vulnerability in the XDR code shown in the aside on page 100 for the case where both data types int and size_t are 32 bits. You decide to eliminate the possibility of the multiplication overflowing by computing the number of bytes to allocate using data type uint64_t. You replace

Aside Security vulnerability in the XDR library
In 2002, it was discovered that code supplied by Sun Microsystems to implement the XDR library, a widely used facility for sharing data structures between programs, had a security vulnerability arising from the fact that multiplication can overflow without any notice being given to the program.

Code similar to that containing the vulnerability is shown below:
```

/* Illustrațion of codempulnerability similar to that found in
* Sun's XDR library.
*/
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
/*
* Allocate buffer for ele_cnt objects, each of ele_size byters
* and copy from locations designated by ele_src
*/
void *result = malloc(ele_cnt * ele_size);
if (result == NULL)
/* malloc failed */
return NULL;
void *next = result;
int i;
for (i = 0; i < ele_cnt; i++) {
/* Copy object i to destination */
memcpy(next, ele_src[i], ele_size);
/* Move pớinter to nex̌t memory region */
next += ele_size;
}
return result;
}

```

The function copy_elements is designed to copy ele_cnt data structures, each consisting of ele_ size bytes into a buffer allocated by the function on line 9 . The number of bytes required is computed as ele_cnt * ele_size.

Imagine, however, that a malicious programmer calls this function with ele_cnt being \(1,048,577\) \(\left(2^{20}+1\right)\) and ele_size being \(4,096\left(2^{12}\right)\) with the program compiled for 32 bits. Then the multiplication on line 9 will overflow, causing only 4,096 bytes to be allocated, rather than the \(4,294,971,392\) bytes required to hold that much data. The loop starting at line 15 will attempt to copy all of those bytes, overrunning the end of the allocated buffer, and therefore corrupting other data structures. This could cause the program to crash or otherwise misbehave.

The Sun code was used by almost every operating system and in such widely used programs as Internet Explorer and the Kerberos authentication system. The Computer Emergency Response Team * (CERT), an organization run by the Carnegie Mellon Software Engineering Institute to track security vulnerabilities and breaches, issued advisory "CA-2002-25," and many companies rushed to patch their code. Fortunately, there were no reported security.breaches caused by this vulnerability.

A similar vulnerability existed in many implementations of the libraìy function calloc. These have since been patched. Unfortunately, many programmers call allocation functions, such as malloc; using arithmetic expressions as arguments, without checking these expressions for overflow. Writing a reliable version of calloc is left as an exercise (Problem 2.76).
the original call to malloc (line 9) as follows:
```

uint64_t asize =
ele_cnt * (uint64_t) ele_size;
void *result = malloc(asize);

```

Recall that the argument to malloc has type'size_t.
A. Does your code provide any improvement over the original?
B. How would you change the code to eliminate the vilnerability?
r

\subsection*{2.3.6 Multiplying by Constants}

Historiçally, the integer multiply instruction on many machines was fairly slow, requiring 10 or more clock cycles, whereas other integer operations--such, as addition, subtraction, bit-level operations, and shifting-required only 1 clock cycle. Even on the Intel Core i7 Haswell we use as our reference machine, integer multiply requires 3 clock cycles. As a consequence, onę important optimization used by compilers is to attempt to replace multiplications by constant factors with combinations of shift*and addition operations.' We will first consider the case of multiplying by a power of 2 , and then we will generalize this to arbitrary constants.
PRINCIPLE: Multipliçation by a power of 2
Let \(x\) be the unsigned integer represented by bit'pattern \(\left[\dot{x}_{\dot{w}-1}, x_{w-2}, \ldots, x_{0}\right]\). Then for any \(k \geq 0\), the' \(w+k\)-bit unsigned' representation of \(x 2^{k}\) is given by \(\left[x_{w-1}, x_{w-2}, \ldots, x_{0}, 0, \ldots, 0\right]\), where \(k\) zeros have been added to the right.

So, for example, 11 can be represented for \(w=4 ;-{ }^{\mathrm{s}},[1011]\). Shifting this left by \(k=2\) yields the 6 -bit vector [101:100], which encodes the unsigned number \(11: 4=44\).

DERİ́ATION: C̛Multiplication by a power of 2
This property can be derived using Equation 2.1:
\[
\begin{aligned}
B 2 U_{w+k}\left(\left[x_{w-1}, x_{w-2}, \ldots, x_{0}, 0, \ldots, 0\right]\right) & =\sum_{i=0}^{w-1} x_{i} 2^{i+k} \\
& =\left[\sum_{i=0}^{w-1} x_{i} 2^{i}\right] \cdot 2^{k} \\
& =x 2^{k}
\end{aligned}
\]

When shifting left by \(k\) for a fixed word size, the high-order \(k\) bits are discarded, yielding
\[
\left[x_{w-k-1}, x_{w-k-2}, \ldots, x_{0}, 0, \ldots, 0\right]
\]
but this is also the case when performing multiplication on fixed-size words. We can therefore see that shifting a value left is equivalent to performing unsigned multiplication by a power of 2 :

PRINCIPLE: Unsigned multiplication by a power of 2
For C variables x and k with unsigned values \(x\) and \(k\), such that \(0 \leq k<w\), the C expression \(\mathrm{x} \ll \mathrm{k}\) yields the value \(x *_{w}^{\mathrm{u}} 2^{k}\).

Since the bit-level operation of fixed-size two's-complement arrithmetic is equivalent to that for unsigned arithmetic, we can make a similar statement about the relationship between left shifts and multiplication by a power of 2 for two'scomplement arithmetic:

PRINCIPLE: Two's-complement multiplication by a power of 2
For C variables x and k with two's-complement value \(x\) and unsigned value \(k\), such that \(0 \leq k<w\), the C expression \(\mathrm{x} \ll \mathrm{k}\) yields the value \(x{ }_{w}^{\mathrm{t}} 2^{k}\).

Note that multiplying by a power of 2 can cause overflow with either unsigned or two's-complement arithmetic. Our result shows that even then we will get the same effect by shifting. Returning to our earlier example, we shifted the 4 -bit pattern [1011] (numeric value 11) left by two positions to get [101100] (numeric value 44). Truncating this to 4 bits gives [1100] (numeric value \(12=44 \bmod 16\)).

Given that integer multiplication is more costly than shifting and adding, many C compilers try to remove many cases where an integer is being multiplied by a constant with combinations of shifting, adding, and subtracting. For example, suppose a program contains the expression \(x * 14\). Recognizing that \(14=2^{3}+2^{2}+2^{1}\), the compiler can rewrite the multiplication as (\(x \ll 3\)) + (\(x \ll 2\)) \(+(x \ll 1)\), replacing one multiplication with three shifts and two additions. The two computations will yield the same result, regardless of whether \(x\) is unsigned or two's complement, and even if the multiplication would cause an overflow. Even better, the compiler can also use the property \(14=2^{4}-2^{1}\) to rewrite the multiplication as (\(x \ll 4\)) \(-(x \ll 1)\), requiring only two shifts and a subtraction.

\section*{}

As we will see in Chapter 3, the LEA instruction can perform computations of the form \((a \ll k)+b\), where \(k\) is either \(0,1,2\), or 3 , and \(b\) is either 0 or some program value. The compiler often uses this instruction to perform multiplications by constant factors. For example, we can compute \(3 * a\) as \((a \ll 1)+a\).

Considering cases where \(b\) is either 0 or equal to \(a\), and all possible values of \(k\), what multiples of a can be computed with a single lea instruction?

Generalizing from our example, consider the task of generating code for the expression \(\mathrm{x} * K\), for some constant \(K\). The compiler can express the binary representation of \(K\) as an alternating sequence of zeros and ones:
\[
[(0 \ldots 0)(1 \ldots 1)(0 \ldots 0) \ldots(1 \ldots 1)]
\]

For example, 14 can be written as \([(0 \ldots 0)(111)(0)]\). Consider a run of ones from bit position \(n\) down to bit position' \(m(n \geq m)\). (For the case of 14, we have \(n=3\) and \(m=1\).) We can compute the effect of these bits on the product using either of two different forms:

Form A: \((x \ll n)+(x \ll(n-1))+\cdots+(x \ll m)\)
Form B: \((x \lll(n+1))-(x \ll m)\)
By adding together the results for each run, we are able to compute \(\mathrm{x} * K\) without any multiplications. Of course, the trade-off between using combinations of shifting! adding, and subtracting versus a single multiplication instruction depends on the relative speeds of these instructions, and these can be highly machine dependent. Most compilers only perform this optimization when a small number of shifts, adds, and subtractions suffice \({ }_{r}\)

How could we modify the expression for form B for the case where bit position \(n\) is the most significant bit?

For each of the following values of \(K\), find ways to express \(\mathrm{x} * K\) using only the specified number of operations, where we consider both additions and subtractions to have comparable coşt. You may need to use some tricks beyond the simple form \(A\) and \(B\) rules we have considered so far.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\xrightarrow{\text { K }}\) & Shifts & Add/Subs & Expression & \multirow{5}{*}{r} & \\
\hline 6 & 2 & 1 & - & & \\
\hline 31 & 1 & 1 & - & & \\
\hline -6 & 2 & 1 & - & & \\
\hline 55 & 2 & 2 & - & & , \\
\hline
\end{tabular}

For a run of ones ștarting at bit position \(\tilde{n}^{\prime}\) down to bit position \(m(n \geq m)\); we saw that we can generáte two forms of códe, A and \(B\). How should' the compiler decide which' form'to ưse?

\subsection*{2.3.7 Dividing by Powers of 2}

Integer division on most machines is even slower than integer multiplicationrequiring 30 or more clock cycles. Dividing by a power of 2 can also be performed
\begin{tabular}{lccc}
\hline \(\mathbf{k}\) & \(\gg \mathrm{k}\) (binary) & Decimal & \(12,340 / 2^{\mathrm{k}}\) \\
\hline 0 & 0011000000110100 & 12,340 & \(12,340.0\) \\
1 & 0001100000011010 & 6,170 & \(6,170.0\) \\
4 & 0000001100000011 & 771 & 771.25 \\
8 & 0000000000110000 & 48 & 48.203125 \\
\hline
\end{tabular}

Figure 2.28 Dividing unsigned numbers by pówers of 2 . The examples illustrate how performing a logical right shift by \(k\) has the same effect as dividing by \(2^{k}\) and then rounding toward zero.
using shift operations, but we use a right shift rather than a left shift. The two different right shifts-logical and arithmetic-serve this purpose for unsigned and two's-complement numbers, respectively.

Integer division always rounds toward zero. To define this precisely, let, us introduce some notation. For any real number \(a\), define \(\lfloor a\rfloor\) to be the unique integer \(a^{\prime}\) such that \(a^{\prime} \leq a<a^{\prime}+1\). As examples, \(\lfloor 3.14\rfloor=3,\lfloor-3.14\rfloor=-4\), and \(\lfloor 3\rfloor=3\). Similarly, define \(\lceil a\rceil\) to be the unique integer \(a^{\prime}\) such that \(a^{\prime}-1<a \leq a^{\prime}\). As examples, \(\left\lceil 3.14 \mid=4,\lceil-3: \uparrow 4\rceil=-3\right.\), and \(\lceil 3\rceil^{\prime}=3\). For \(x \geq 0\) and \(y>0\), integer division should yield \(\lfloor x / y\rfloor\), while for \(x<0\) and \(y>0\), it should yield \(\lceil x / y\rceil\). That is, it should round down a positive result but round up a negative one.

The case for ùsing shift's with unsigned arithmetic is straightforward, in part because right shifting is guaranteed to be performed logically for unsigned values.

PRINCIPLE: Unsigned divisionsy a power of 2
For C váriables x and k with unsigǹed values \(x\) and \(k\), such that \(0^{\circ} \leq k^{*}<w\), the C expression \(\mathrm{x} \gg \mathrm{k}\) yields the value \(\left\lfloor x / 2^{k}\right\rfloor\).

As examples, Figure 2.28 shows the effects of performing logical right shifts on a 16 -bit representation of 12,340 to perform division by \(1,2,16\), and 256 . The zeros shifted in from the left are shown in italics. We also show the result we would obtain if we did these divisions with real arithmetic. These examples show that the result of shifting consistently rounds toward zero, as is the convention for integer division.

DERIVATION: Unsigned division by a power of 2 ,
Let \(x\) be the unsigned integer represented.bybit pattern \(\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]\), and let \(k\) be in the range \(0 \leq k<w_{\text {. }}\). Let \(x^{\prime}\) be the unsigned number with \(w_{-}-k_{-}\)-bit representation \(\left[x_{w-1}, x_{w-2}, \ldots, x_{k}\right]\), and let \(x^{\prime \prime}\) be the unsigned nymber with \(k\)-bit representation \(\left[x_{k-1}, \ldots, x_{0}\right]\). We can therefore see that \(x=2^{k} x^{\prime}+x^{\prime \prime}\), and that \(0 \leq x^{\prime \prime}<2^{k}\). It therefore follows that \(\left\lfloor x / 2^{k}\right\rfloor=x^{\prime}\).
 the bit vector
\[
\left[0, \ldots, 0, x_{w-1}, x_{w-2}, \ldots, x_{k}\right]
\]
\begin{tabular}{lcrc}
\hline \(\mathbf{k}\) & \(\gg k\) (binary) & Decimal & \(-12,340 / 2^{\mathrm{k}}\) \\
\hline 0 & 1100111111001100 & \(-12,340\) & \(-12,340.0\) \\
1 & 1110011111100110 & \(-6,170\) & \(-6,170.0\) \\
4 & 1111110011111100 & -772 & -771.25 \\
8 & 1111111111001111 & -49 & -48.203125 \\
\hline
\end{tabular}

Figure 2.29, Applying arithmetic right shift. The examples illustrate that arithmetic right shift is similar to division by a powers of 2, except that it rounds down rather than toward zero.

This bit vectorr has numeric,value \(x^{\prime}\), which we have seen is the value that would result by computing the expression \(\mathrm{x} \gg \mathrm{k}\).

The case for dividing by a power of 2 with two's-complement arithmetic is slightly more complex. First, the shifting should be performed using an arithmetic right shift, to ensure that negative valués remain negative. Let us in'vestigate what value such a right shift would produce.

PRINCIPLE: 'Two's-complement division by a power of 2 , rounding down
Leț \(C\) variables \(x\) and \(k\) have two's-complement! value \(x\) and unsigned value \(k\), respectively, such that \(0, \leq k<w\). The C expression \(\mathrm{x} \gg \mathrm{k}\), when the shift is performed arithmetically, yields the yalue \(\left\lfloor x / 2^{k}\right\rfloor\).

For \(x \geq 0\), variable \(x\) has 0 as the most' significant bit, and so, the effect of an arithmetic shift is the same as for a logical right shift. Thus, an arithmetic right shift by \(k\) is the same as division by \(2^{k}\) for a nonnegative number. As an example of a negative number, Figure 2.29 shows the effect of applying arithmetic right shift to a \(16_{\text {; }}\) bit representation of \(-12,340\) for different shift amounts. For the case when no rounding is required (\(k=1\)), the result will be \(x / 2^{k}\). When rounding is required, shifting causes the result to be rounded downward. For example, the shifting right by four has the effect of rounding -771.25 down to -772 . We will need to adjust our strategy to handle division for negative values of \(x\).
DERIVATION: Two's-complement division by a power of 2 , rounding down
Let \(x\) be țhe two's-complement integer represented by bit pàttern [\(x_{w-1}, x_{w-2}\), \(\left.\ldots, x_{0}\right]\), and let \(k\) be in the range \(0 \leq k<w\). Let \(x^{\prime}\) be the two's-complement number represented by the \(w-k\) bits \(\left[x_{w-1}, x_{w-2}, \ldots, x_{k}\right]\), and let \(x^{\prime \prime}\) be the unsigned number represented by the low-order \(k\) bits \(\left[x_{k-1}, \ldots, x_{0}\right]\). By a similar analysis as the unsigned case, we have \(x=2^{k} x^{\prime}+x^{\prime \prime}\) and \(0 \leq x^{\prime \prime}<2^{k}\), giving \(x^{\prime}=\) \(\left[x / 2^{k}\right]\). Furthermore, observe that shifting bit vector \(\left[x_{w-1}, x_{w-2}, \ldots, x_{0}\right]\) right arithmetically by \(k\) yields the bit vector
\[
\left[x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_{k}^{\prime}\right]
\]
which is the sign extension from \(w-k\) bits to \(w\) bits of \(\left[x_{w-1}, x_{w-2}, \ldots, x_{k}\right]\). Thus, this shifted bit vector is the two's-complement representation of \(\left\lfloor x / 2^{k}\right\rfloor\).
\begin{tabular}{lrccccc}
\hline\(k\) & Bias & \(-12,340+\) bias (binary) & \(\gg k\) (binary) & Decimal & \(-12,340 / 2^{k}\) \\
\hline 0 & 0 & 1100111111001100 & 1100111111001100 & \(-12,340\) & \(-12,340.0\) \\
1 & 1 & 1100111111001101 & 1110011111100110 & \(-6,170\) & \(-6,170.0\) \\
4 & 15 & 1100111111011011 & 1111110011111101 & -771 & -771.25 \\
8 & 255 & 1101000011001011 & 1111111111010000 & -48 & -48.203125 \\
\hline
\end{tabular}

Figure 2.30 Dividing two's-complement numbers by powers of 2. By adding a bias before the right shift, the result is roanded toward zero.

We can correct for the improper rounding that occurs when a negative number is shifted right by "biasing" the value before shifting.

PRINCIPLE: Two's-complement division by a power of 2 , rounding up
Let C variables x and k have two's-complement value \(x^{\prime \prime}\) and 'unsigned value \(k\), respectively,'such that \(0 \leq k<w\). The C exprestsion \({ }^{\prime \prime}\left(x^{\prime \prime}+\left(1 \ll^{\prime} k^{\prime \prime}\right)-1\right) \gg \mathrm{k}\), when the shift is performed arithmetically, yields the value \(\left\lceil x / 2^{k}\right\rceil\).

Figure 2.30 demonstrates how adding the appropriate bias before performing the arithmetic right shift causes the result to be correctly rounded. In the third column, we show the result of adding, the bias value to \(-12,340\), with the lower \(k\) bits (those that will be shifted off to the right) shown in italics. We can see that the bits to the left of these may or may not be incremented. For the case where no rounding is required (\(k=1\)), adding the bias only affects bits that are shifted off. For the cases where rounding is required, adding the bias causes the upper bits to be incremented, so that the result will be rounded toward zero.

The biasing tech frique explofits the property that \(\lceil x / y\rceil=\lfloor(x+y-1) / y\rfloor\) for integers \(x\) and \(y\) such that \(y^{\prime \prime}>{ }^{\prime \prime}\). A's examples, when \(x=-30\) and \(y=4\), we have \(x+y-1=-27\) and \(\left.\lceil-30 / 4\rceil=-7=_{-1}^{\lfloor 27}-27 / 4\right\rfloor\). When \(x=-32\) and \(y \stackrel{i}{=} 4\), we hitave \(x+y-1=-29\) and \(\lceil-32 / 4\rceil=-8=\lfloor-29 / 4\rfloor\).
DERIVATION: Two's-complement dívision by a power of 2 , rounding up
To see that \(\lceil x / y\rceil=\lfloor(x+y-1) / y\rfloor\), suppose that \(x=q y+r\), where \(0 \leq r<y\), giving \((x+y-1) / y={ }^{*} q_{1}+(r+y-1) / y\), and so \(\left\lfloor\left(x+y_{1}+1\right) / y\right\rfloor=q+\lfloor(r+y-\) 1) \(/ y\rfloor\). The latter term will equal 0 when \(r=0\) and 1 when \(r>0\). That is, by adding a bias of \(y-1\) to \(x\) and then rounding the division dow̆ñard, we will get \(q\) when \(y\) divides \(x\) and \(q+1\) otherwise.

Returning to the case where \(y=2^{k}\), the C expression \({ }_{1}^{\prime}+(1 \ll k)^{1}-1\) yield́s the value \(x+2^{k}-1\). Shifting this right arithmetically by \(\underset{t}{ }\) therefore yields \(\left\lceil x / 2^{k}\right]_{\text {; }}\)

These analyses show that for a two's-complement machine using arithmetic right shifts, the C expression
\[
(x<0 \quad ? x+(1 \ll k)-1: x) \gg k
\]
will compute the value \(x / 2^{k}\).

Write a function div16 that returns the value \(x / 16\) for integer argument \(x\). Your function should not use division, modulus, multiplication, any conditionals (if or ?:), any comparison operators (e.g., \(<,>\), or \(==\)), or any loops. You may assume that data type int is 32 bits long and uses a two's-complement representation, and that right shifts are performed arithmetically.

We now see that division by a power of 2 can be implemented ușing logical \({ }^{1}\) or arithmetic right shifts. This is precisely the reason the two types of right shifts are available on most machines. Unfortunately, this approach does not generalize to division by arbitrary constants. Unlike multiplication, we cannot express division by arbitrary constants \(K\) in terms of division by powers of 2 .

\section*{Practice Problem 2,43 (solution page 1572 \({ }^{2}\), 2}

In the following codé, we have omitted the definitions of constants \(M\) and \(N\) :
```

\#define M /* Mystery number 1 */
\#define N /* Mystery number 2 */
int arith(int }x\mathrm{ , int }y\mathrm{ ) {
int result = 0;
result = x*M + y/N; /* M and N are mystery numbers. */
return result;
}

```

We compiled this code for particular values of \(M\) and \(N\). The compiler optimized the multiplication and division using the methods we haye discussed. The following is a translation of the generated machine code back into \(C\) :
```

/* Translation of assembly code for arith */
int optarith(int x, int y) {
int t = x;
x<<= 5;
x -= t;
if (y < 0) y += 7;
y >>= 3; /* Arithmetic shift */
return x+y;
}

```
 What are the values of \(M\) and \(N\) ?

\subsection*{2.3.8 Final Thoughts on Integer Arithmetic}

As we have seen, the "integer" arithmetic performed by computers is really a form of modular arithmetic. The finite word size used to represent numbers
limits the range of possible values, and the resulting operations can overflow. We have also seen that țhe two's-complempent repreșentation provides a çlever way to represent both negative and positive values, while using the same bit-level implementations as are used to perform unsigned arithmetic-operations such as addition, subtraction, multiplication, and even division have either iddentical or very similar bit-level behaviors, whether the operands are in unsignéd or two'scomplement form.

We have seen that some of the conventions in the C language can yield some surprising results, and these can be sources of bugs that are hard to recognize or understand. We'have especially seen that the unsigned data typé, while conceptually straightforward, can lead to behaviots that eyen experienced programmers'do not expect. We have also seen that this data type'can arise in unexpected ways-for example, when writing integer constants and when invoking library routines.

\section*{Practice Problemsiat colution pageis}

Assume data type int is 32 bits long and uses a two's-complement representation for signed values. Right shifts are performed arithmetically for signed values and logically for unsigned values. The variables are declared and initialized as follows:
```

int x = foo(); /* Arbitrary value */
int y = bar(); /* Arbitrary value */

```
unsigned \(u x=x\); unsigned uy \(=\mathrm{y}\);

For each of the following C expressiơns, either (1) argue that it is true*(evaluates to 1) for all values of \(x\) and \(y\);ort (2) give values of \(x\) and \(y\) for which it is false (evaluates to 0): '
A. \((x>0)|\mid(x-1<0)\)
B. \((x \& 7)!=7| |(x \ll 29<0)\)
C. \((x * x)>=0\)
D. \(x<0| |-x<=0\)
E. \(x>0| |-x\rangle=0\)
F. \(x+y==u y+u x\)
G. \(\mathrm{x} * \sim \mathrm{y}+\mathrm{uy} * \mathrm{ux}==-\mathrm{x}\)

\subsection*{2.4 Floating Point}

A floating-point representation encodes rational numbers of the form \(V=x \times 2^{y}\). It'is useful for performing computations involving very large numbers \((|V| \gg 0)\),```

