
SENNA: Unified Hardware/Software Space Exploration for

Parametrizable Neural Network Accelerators

JUNGYOON KWON, Dept. of Computer Science and Engineering, Seoul National University, Seoul,

South Korea

HYEMI MIN, Dept. of Computer Science and Engineering, Seoul National University, Seoul, South Korea

BERNHARD EGGER, Dept. of Computer Science and Engineering, Seoul National University, Seoul,

South Korea

Parametrizable neural network accelerators enable the deployment of targeted hardware for specialized en-

vironments. Finding the best architecture configuration for a given specification, however, is challenging. A

large number of hardware configurations have to be considered, and for each hardware instance, an efficient

software execution plan needs to be found, leading to a vast search space. Prior work has tackled this problem

by dividing the search into subproblems for individual layers of a network. There is no guarantee, however,

that the overall best hardware configuration that delivers the desired end-to-end performance across the

entire network is among the best individual layer configurations.

This work presents SENNA, a unified hardware/software space exploration framework for parametrizable

neural network accelerators. To guide the exploration toward the overall best configuration, SENNA employs

a multi-objective genetic algorithm with a novel design space representation that encodes the configuration of

hardware and software parameters in a single chromosome. Using the Parallel Island Model (PIM), each layer

is represented by one or more individual islands each containing a separate population to simultaneously

search for the best configuration across the entire network. A tailored gene migration technique enables the

exchange of genes between the populations of different islands.

SENNA is evaluated with three parametrizable architectures and four neural networks. The evaluation

result demonstrates that SENNA achieves upto 1.92x EDP improvement compared to the State-of-the-Art.

With equivalent evaluation budgets, SENNA shows 2.5x–9.3x speedup compared to an Oracle scheme and

the State-of-the-Art.

CCS Concepts: • Hardware → Electronic design automation; Physical design (EDA); Placement;

Additional Key Words and Phrases: HW/SW co-design, reconfigurable accelerators, design space exploration,

multi-objective genetic algorithm, parallel island model

This work was funded, in parts, by the Korean National Research Foundation through grants 21A20151113068 (BK21 Plus

for Pioneers in Innovative Computing—Dept. of Computer Science and Engineering, SNU), 10077609 (MOTIE/KEIT), and

RS-2023-00302083 (MSIT). ICT at Seoul National University provided research facilities for this study.
Authors’ Contact Information: Jungyoon Kwon, Dept. of Computer Science and Engineering, Seoul National University,

Seoul, South Korea; e-mail: jungyoon@csap.snu.ac.kr; Hyemi Min, Dept. of Computer Science and Engineering, Seoul

National University, Seoul, South Korea; e-mail: hyemi@csap.snu.ac.kr; Bernhard Egger (corresponding author), Dept. of

Computer Science and Engineering, Seoul National University, Seoul, South Korea; e-mail: bernhard@csap.snu.ac.kr.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).

ACM 1539-9087/2025/01-ART30

https://doi.org/10.1145/3705731

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.

HTTPS://ORCID.ORG/0000-0003-4416-9476
HTTPS://ORCID.ORG/0000-0002-3261-626X
HTTPS://ORCID.ORG/0000-0002-6645-6161
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3705731
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3705731&domain=pdf&date_stamp=2025-01-11


30:2 J. Kwon et al.

ACM Reference Format:

Jungyoon Kwon, Hyemi Min, and Bernhard Egger. 2025. SENNA: Unified Hardware/Software Space Explo-

ration for Parametrizable Neural Network Accelerators. ACM Trans. Embedd. Comput. Syst. 24, 2, Article 30

(January 2025), 26 pages. https://doi.org/10.1145/3705731

1 Introduction

Over the past decade, we have witnessed unprecedented advances in deep learning. In multiple
areas, artificial intelligence powered by deep learning now outperforms traditional algorithms and
even human experts, such as, for example, in image recognition, natural language processing, and
game play [27, 28, 45]. The deep neural networks (DNNs) that made this achievement possible
have become increasingly versatile and operate seamlessly across a wide range of devices from
large data centers to resource-constrained IoT devices.

In embedded systems, the execution of DNN workloads faces significant challenges due to their
high computational complexity and energy consumption [6]. To address this problem, researchers
have explored software optimizations such as network pruning [35], bit-width reduction [12], and
network reorganization [48]. On the hardware side, tailored accelerators have been proposed to
improve performance and energy efficiency in embedded systems [1, 8, 11]. Recently, reconfig-
urable neural accelerators that allow the optimization of hardware parameters towards specific
DNN workloads have shown particular promise [17, 38, 40].

Reconfigurable accelerators are parametrizable in terms of the compute and memory resources,
I/O bandwidth, and network-on-chip (NoC) connectivity at design time. Determining the
hardware parameters of a reconfigurable accelerator to obtain a configuration that meets specific
constraints is, however, a complex task. The performance of an accelerator cannot be inferred
directly from its hardware parameters and requires sophisticated algorithms to find the best
execution schedule for a given configuration [33, 51]. For example, the workload of a convolution
operator typically has to be tiled because the layer data does not fit into the on-chip memory.
The dimensions along which a workload is tiled and the execution order of the tiled operations
strongly affect the execution time and amount of data transferred between on- and off-chip
memories [11], hence, finding the optimal tiling parameters that minimize energy consumption
and maximize performance across all layers of a network is a significant challenge in itself [34].

Previous studies have focused on co-optimizing the hardware (architecture configuration) and
software (tiling and data flow order) design space. To tame the vast search space, each layer is
optimized separately, resulting in repeated searches for each individual layer [26, 41, 42, 54, 55, 58].
For a network with N layers, the design optimization search is repeated N times and potentially
yields N discrete hardware configurations. These discrete configurations are not guaranteed
to include the optimal configuration for the entire network. As a result, identifying the unified
hardware configuration that achieves the overall best performance for an entire network remains
an open problem.

To address these challenges, this work presents SENNA, a unified hardware/software Space
Exploration framework for parallel Neural Network Accelerators. SENNA employs the Parallel

Island Model (PIM) to simultaneously perform a design space exploration (DSE) for the best
configurations of each layer as well as the overall network. In PIM, each layer is represented by one
or more islands. The evolution of the population is implemented by a customized multi-objective
genetic algorithm that combines the encoding of the hardware and software configuration of
a layer into a single chromosome. By exchanging the best-performing chromosomes between
islands, the algorithm converges towards globally optimal configurations. Since the parameters
of a layer differ from island to island, in general, the chromosomes of one island constitute an

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.

https://doi.org/10.1145/3705731


Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:3

invalid configuration on a different island. To ensure that only valid hardware configurations are
exchanged, SENNA employs a tailored migration algorithm that shares only the hardware portion
of a chromosome between islands. Evaluated with three parametrizable architectures and four
networks, SENNA is able to find a better hardware configuration than state-of-the-art techniques
in significantly less time.

In summary, the main contributions of this article are as follows:

— We present a unified encoding that embeds the hardware configuration and the software
mapping of a layer in a single chromosome.

— We employ a multi-objective evolutionary algorithm (MOEA) on a PIM with tailored mi-
gration operations to simultaneously search for locally and globally optimal configurations.

— A comparison with an Oracle scheme and the state-of-the-art shows that SENNA is able to
find significantly better configurations for networks in considerably less time.

The remainder of this article is organized as follows. Section 2 presents the background of this
work and reviews related approaches. The design and implementation of SENNA are discussed
in Section 3. Section 4 presents an evaluation of SENNA compared to baseline search methods.
Section 5, finally, concludes this work.

2 Background

2.1 Execution of DNN Workloads on Accelerators

Neural networks are growing deeper and feature more and more layers. Popular large networks
perform billions of operations on gigabytes of data—data that must be loaded into the accelerator
to run network inference at a decent speed [6, 7, 31, 49]. This poses a particular challenge in the
embedded systems world and led to the desire to design tailored hardware accelerators that can
execute specific neural networks with given chip area, power, or latency constraints.

Both academia and industry have presented neural network accelerators that achieve high
energy efficiency and throughput [8, 11, 20, 44]. Eyeriss [11] explores different orders of dataflows,
including input-, weight-, output-, and row-stationary dataflows, to achieve efficient execution.
The DianNao accelerators [8, 18, 32] minimize memory transfer between on- and off-chip
memory. NVDLA [60] is an architecture optimized for weight-stationary dataflow, and Tetris [20]
uses bypass ordering, which is similar to data stationary optimization. Simba [44] extends an
accelerator with multiple chiplets considering non-uniform latency.

The high degree of configurability and control leads to a large number of possible execution
orders (mappings) of a DNN workload to a given accelerator design. The popular convolutional

neural networks (CNNs) are mainly composed of convolutional and fully-connected layers that
dominate the overall runtime [10]. The basic computations of these layers are matrix multiplica-
tions that can be described with nested loops [39, 54]. For example, the computation of a convolu-
tional layer can be expressed as a seven-fold nested loop that takes a three-dimensional input and
four-dimensional filters as inputs to compute a three-dimensional output feature map. A mapping

refers to an operation schedule that executes a loop nest on an accelerator. Since the organization
of the loops dictates the sequence of the data-access patterns, a schedule must consider the storage
hierarchy of the accelerator and the capabilities of its computational resources to explore possible
data reuse opportunities. Loop optimization techniques such as loop unrolling, loop tiling, and
loop interchange have been used to find the data partitioning and execution order that yields an
optimal execution schedule [14].

Figure 1 illustrates the mapping of a 1D convolutional layer to a spatial architecture with a
3-level storage hierarchy composed of external DRAM, an on-chip buffer, and eight processing

elements (PEs) with private register files. The 1D convolutional layer is represented as a nested

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



30:4 J. Kwon et al.

Fig. 1. Mapping example of a 1D convolutional layer with C = 64, W = 3, and P = 32.

loop iterating over the width of the weights (W) or the output (P), and the height of the kernel
and feature map (C). The simple 3-fold nested loop of the 1D convolution is explicitly tiled into
a 12-fold nested loop to exploit spatiotemporal data reuse opportunities presented by the storage
hierarchy and the parallelism in the hardware. The mapping of Figure 1 shows only one of many
possible execution schedules. Other schedules may lead to shorter execution times or minimize the
accesses to the on-chip memory or external DRAM. Even for a single hardware configuration, these
spatiotemporal data reuse opportunities form a large mapspace of potential execution schedules.

2.2 Search Methods

Finding the single hardware configuration that leads to optimal performance across all layers re-
quires an exploration of many different hardware configurations for each layer, for each of which
a large number of possible execution schedules exist. In practice, the search space is too large for
a brute-force evaluation of all possible combinations.

Existing accelerator performance evaluation tools can be classified into three types according to
how they address the scheduling problem. Heuristic search algorithms prune the mapspace based
on prior knowledge and use an analytic model for the evaluation. Exhaustive search [53], random
search [29, 39], and beam search [2] are among the proposed search algorithms. Because these
approaches require a large amount of computational resources, they are able to only explore a
limited part of the entire mapspace and therefore often end up with a suboptimal solution. Black-
box optimization techniques such as Simulated Annealing [9], Bayesian optimization [36, 52], and
Genetic algorithms [25] were presented to overcome the complexity and infeasibility of exploring
the entire search space. Other feedback-based techniques such as Reinforcement Learning [59] or
constrained-based methods [22, 23] were also suggested as alternatives.

To automate the accelerator design process for a specific CNN model, prior works encompass
DSE engines and accelerator modeling tools [52, 55, 58]. Bayesian optimization [52] and Particle
Swarm Optimization [58] are two methods proposed to explore the vast search space more

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:5

Fig. 2. Cost surface plot of Mapspace and Joint Design Space on the first layer of MobileNet-V2. Darker

blue indicates lower EDP. Joint Design Space illustrates the cost surface for running the given layer on a

number of Eyeriss architecture designs. Interdependent subspaces form a broaden search space and show a

non-convex and non-smooth cost surface.

efficiently. Beyond accelerator-mapping co-design, similar approaches are also found in the area
of Neural Architecture Search (NAS) that conducts HW-aware Neural Network optimization
[19, 30].

In this work, we employ a multi-objective genetic algorithm to guide the search. Genetic algo-
rithms are a popular optimization technique in which a population of candidate solutions evolves
over several generations (epochs) toward a better solution. The parameters of each member of the
population are encoded in a chromosome, and a fitness function evaluates the quality of a member.
Some candidates are selected and modified during evolution by applying crossover and mutation
operations on the chromosomes. The next generation is typically composed of well-performing
candidates, mutated candidates, and newly injected candidates. A genetic algorithm evolves
over generations until it converges to a solution or reaches a limit on the maximum number of
generations.

2.3 Related Work

The cartesian product of the valid hardware configurations and possible software execution plans
form a vast non-convex search space with many local minima and invalid points [22]. To provide
a clear view of the variety of design choices available, Figure 2 shows the cost surface of mapspace
and joint design space for the Eyeriss architecture running the first layer of MobileNet-V2. Two
subspaces are included on mapspace, defined from the loop tiling choices and loop permutation
choices. Together, they deliver different costs of mapping and form a non-convex and non-smooth
search space. Joint Design Space shows that the search space quickly increases adding a number
of hardware. Practical designs are more complicated and open a new challenge to explore this
broaden search space.

Motivated by the search methods described in the previous section, early works attempt to co-
optimize the accelerator configuration with software mappings to obtain a solution. Table 1 lists
and compares the most relevant related works. HASCO [54] employs multi-objective Bayesian
optimization for the hardware DSE and a Q-learning algorithm to explore the software mapspace.
Confuciux [24] is based on reinforcement learning and an evolutionary algorithm for higher accu-
racy. The development cost and turnaround time of both approaches are prohibitively high because
the search of the two design spaces is handled separately in a nested optimization loop (Figure 3),

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



30:6 J. Kwon et al.

Table 1. State-of-the-Art HW-SW Exploration Frameworks

Framework Joint HW-SW Multiple Network-wide Network-wide

Optimization Objectives Exploration HW Search

HASCO [54] �
Confuciux [24] � �
DiGamma [26] �

MEDEA, EPOCA [41, 42] � � �
SENNA (this work) � � � �

Fig. 3. Joint hardware/software DSE on limited mapspace.

i.e., the software mapping is evaluated separately for each hardware configuration. Minor changes
in the accelerator design invalidate the prior knowledge of mappings and require a new full DSE.

Integrating the two searches into a single DSE process enhances the efficiency of finding
the best architecture design for a given layer. Digamma [26] combines the exploration of the
hardware search and software mapping in an evolution algorithm with a sequential encoding
of genes. MEDEA [41] and EPOCA [42] first find feasible software mappings for each layer
without considering the hardware. Then, they pair each mapping with the amount of resources
exercised on an architecture instance with abundant resources and employ a multi-objective
genetic algorithm to find the best configuration for each layer. The global hardware configuration
AN which delivers the overall performance of z∗ is obtained by selecting the maximum of each
configurable hardware resource an across the local (layer) configurations (an ,mn ). That is,

z∗ = Σfn(AN ,mn),n = 1, 2, . . . ,N

AN =max(an),n = 1, 2, . . . ,N ,

where the cost function fn(an ,mn) denotes the cost of executing software mapping mn on
hardware configuration an for layer n. MEDEA [41] suggests heuristics that choose the mappings
based on multiple score functions. EPOCA [42] replaces the heuristics with an evolutionary
algorithm that selects the best hardware/software configuration for each layer. The global
hardware configuration AN is derived from the local optima for each layer, and the metrics, such
as energy or latency, are recomputed with the hardware configuration AN and aggregated to
obtain the overall performance.

While these techniques achieve satisfactory results for specific accelerators, only a small part of
the vast hardware and software design space is explored. Both DiGamma [26] and Confuciux [24]
make use of Maestro [29], a software mapper that is limited to weight-stationary data flows with
private L1 and global L2 scratchpad memories [56], to generate software schedules. The limited
configurability of Maestro hinders the application of the methods towards other reconfigurable
hardware architectures. More importantly, no existing technique performs a global search on

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:7

the entire network but rather generates the global solution from the set of locally optimized
configurations with limited mapspaces. The Pareto-optimal solutions for each layer form another
combinatorial optimization problem to find the best hardware and software configuration. To
support the execution of every locally optimized mappings, the globally optimized hardware
configuration is composed of each maximum HW component size from the set of locally opti-
mized configurations. However, the proposed design tends to be area-intensive and easily leads
to tedious explorations and sub-optimal solutions. To address the challenges above, this work
proposes a novel design space representation that embraces both design spaces, so that the search
method can conduct an efficient and flexible choice on hardware configurations. It facilitates the
exploration of the architecture design that requires a minimum amount of resources with minimal
degradation in performance.

2.4 Multi-Objective Evolutionary Algorithms

In multi-objective optimization problems, we consider more than one objective function to be max-
imized or minimized in the presence of certain constraints. Mathematically, the problem addressed
in this article is to find the ideal solution z* that is the minimization of multiple cost functions fm(x)
with lower and upper bounds on the problem variables:

z∗ = arдminfm(x),m = 1, 2, . . . ,M

x (L)
i

≤ xi ≤ x (U )
i
.

While the superiority of a solution in a single-objective is found by comparing cost function values,
the superiority in a multi-objective is determined based on Pareto dominance relations. With con-
flicting objectives, typically, no point maximizes all the objectives simultaneously. The Pareto front
or Pareto-optimal set represents the collection of solutions where no other solution can improve
on at least one objective without sacrificing performance on another objective. A multi-objective
optimization problem thus aims at approximating the Pareto-optimal set.

In addition to the Pareto set, the ideal and the nadir points are estimated during the optimization.
These points represent the best, respectively, the worst objective value over the Pareto-optimal set
with respect to a given objective. The ideal and the nadir point thus define the possible value ranges
of the objective functions and are used to guide the search, normalization, and visualization [3, 15].

MOEAs [16, 61] have been applied successfully to a number of problems with multiple
objectives because of their ability to explore a large global search space and obtain an evenly and
well-distributed Pareto-front. NSGA-II [16] is one of the most popular MOEAs that employ a fast
nondominated sorting algorithm when ranking solutions. MOEAD [57] uses decomposition to
divide the problem into single objective subproblems and optimizes the subproblems concurrently.

2.5 Parallel Island Mode

A combinatorial optimization problem is an NP-hard problem that finds the best solution in a fi-
nite or possibly countably infinite set [5]. Since the search space grows super-exponentially, an
exhaustive search is infeasible. Metaheuristics are widely acknowledged tools to address this com-
plex problem with a finite set of solutions but are still limited in achieving a reasonable computing
time.

Parallel metaheuristics aim at addressing both of these problems. The PIM, also known as an
archipelago, was initially proposed for genetic algorithms in order to improve the quality of solu-
tions and reduce the runtime of the algorithms [13]. In a PIM, the global population is divided into
“islands” containing distinct subpopulations that evolve in parallel. A topology defines the connec-
tions between the islands and allows the exchange of individuals through migration. Evolution is
augmented by migration to increase the likelihood of finding globally optimal solutions since the

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



30:8 J. Kwon et al.

Fig. 4. Previous approaches divide the search into layer-wise subproblems and output a hardware obtained

through a combination of the per-layer best configurations. SENNA, on the other hand, searches for the

global best hardware by employing a PIM.

exchange of locally optimized solutions from different islands introduces more diversity [47]. The
topology of an archipelago can be static or dynamic during the evolution. Different metaheuristics,
such as genetic algorithms, particle swarms, simulated annealing, or colony optimization, can be
used as the evolutionary engine.

3 Design and Implementation

This section discusses the formulation of the design space and the entailed optimizations to obtain
a feasible search space. We employ a novel representation of the design space that is suitable to
guide the DSE toward the global best configuration of a given DNN model. To the best of our
knowledge, this work is the first to formulate and explore global DSE for parametrizable neural
network accelerators.

3.1 Challenges and Motivation of Using the Parallel Island Model

Finding the best architecture design for a given DNN model is particularly challenging since
evaluating the entire model is expensive and time-consuming. Prior work has tackled this
problem by dividing it into subproblems for the layers of a network [24, 54]. Figure 4(a) shows
this approach. Solutions comprising pairs of hardware configurations and software mappings are
generated for every layer. Finding the best single overall hardware configuration and per-layer
software mappings from the Pareto-approximated solutions of the individual layers forms another
exploration of a non-trivial search space. Choosing the global hardware configuration from a set
of per-layer Pareto sets can be formulated as a combinatorial optimization problem; however, the
best hardware configuration of one layer may be suboptimal for another layer. We also need to
consider that some hardware configurations in the Pareto set of one layer may not exist in other
layers, requiring additional explorations of the software mapspace.

To this end, a systematic approach is required that integrates layer-wise searches into a
global DSE. We propose to leverage the idea of migration from the PIM to exchange the best
hardware configurations between different layers. The benefit of this approach is that the locally
best candidates are shared with other islands, leading to a convergence on the globally best
configuration.

Traditional implementations of PIMs assume compatibility of chromosomes between island
and simply migrate entire chromosomes. In our scenario, however, chromosomes of different
islands may not be compatible with each other because a software mapping is tied to a given

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:9

Fig. 5. Overview of the SENNA methodology.

hardware configuration and the layer parameters. While the hardware configuration is a feature
of the parametrizable hardware, a specific configuration is always valid on any island, however,
the layer parameters of the migrated-to islands may not be valid. For instance, the operators
of different layers vary in the dimensions of the input, weight, and output parameters and
thus require a re-exploration of the specific parameter space. The problem can be considered
a heterogeneous optimization problem with incompatible encodings caused by different layer
parameters. Such incompatible encodings not only increase the complexity of the search but also
lead to a corruption of the search space. Therefore, we do not migrate the entire chromosome.
Instead, only the hardware configuration part of the chromosome is migrated (Figure 6(b)), and a
compatible software mapping is computed on the destination island. If no mapping can be found
because the hardware configuration is incompatible with the layer parameters, the migrated
chromosome is discarded. This approach ensures that only compatible hardware configurations
are exchanged while preserving diversity and efficient mappings on each island.

SENNA uses a two-phase approach to find a global solution (Figure 5). In the first phase,
called the global search phase, SENNA employs a multi-objective genetic algorithm on a PIM to
perform the DSE. The population is encoded with architecture design and mapspace choices and
divided into subpopulations on the islands of PIM. The proposed migration operators and the
PIM topology enable the algorithm to converge towards the globally optimal architecture design
and increase the likelihood of escaping local optima. Moreover, we develop a method to estimate
the overall performance metrics based on Pareto-approximated solutions to select a suitable
architecture configuration as detailed in Section 3.4. In the second phase, called the fine tuning

phase, the chosen architecture design from the global search phase is further optimized to improve

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



30:10 J. Kwon et al.

the quality of the mappings. At the end of the second phase, the overall performance statistics
are used to determine the best architecture design and the corresponding per-layer software
mappings.

3.2 Encoding Design Space Parameters

Here, we first describe how SENNA represents the different design parameters. To support the
layer-aware migration described in the previous section, dedicated encoding and specialized oper-
ators are necessary. While prior work typically encodes the bounds of the deeply-nested loops with
respect to the memory hierarchy; however, this leads to long encodings that are proportional to
the depth of the memory hierarchy. SENNA, on the other hand, employs a compact encoding with
a fixed length that well fits emerging accelerators and networks. SENNA’s software mapspace that
encodes the tiling size, the order of the data flow, and loop unrolling parameters are represented
by the following four subspaces:

— The tile size represents the factorization of the loop bounds across the memory hierarchy.
— The loop order represents a permutation of the loop nests on each level of the memory

hierarchy.
— The parallelization parameter indicates whether the innermost loop can be distributed

(unrolled) to parallel hardware components.
— The bypass parameter indicates whether the hardware has dedicated on-chip memories for

the different types of data (bypass=1) or whether input, weight, and output data are allocated
to a shared buffer (bypass=0).

The parallelization and bypass subspaces can each be represented by a single gene. The
tile size and loop order subspaces encode large parameter spaces that reach up to O(1062)

for the Eyeriss architecture with the VGG16 network. For a 2-dimensional convolution, the two
subspaces each comprise seven elements to represent the tile size and loop level of each of the
seven nested loops and are encoded as integer values. For a 1-dimensional convolution, as shown
in Figure 1, each space requires three genes. The software mapspace thus requires 8 (=3+3+1+1) and
16 (=7+7+1+1) genes, respectively, to express 1- and 2-dimensional convolutions. After we split the
tile size and loop order subspaces according to the number of loop dimensions, the possible
factorizations of each loop bound in the corresponding memory hierarchy level are encoded as
integer values. We apply a lexicographical order from the outermost to the innermost level of the
memory hierarchy.

We refer to the mapping example from Figure 1 and describe the joint encoding scheme of
the design spaces in Figure 6. Figure 6(a) applies the encoding to represent the information of
a software mapping. A 1-dimensional convolutional layer has three loop variables C, W, and P
with bounds 64, 3, and 32. Loop variable C with a bound of 64 is factorized and allocated to the
four levels in the memory hierarchy with factors (1,2,8,4). Since the loops in DRAM are mapped
C →W → P (top right of Figure 6(a)), the encoding is 0 (representing C), 1 (W ), and 2 (P ). Each
possible distribution of the loop bound is encoded as an integer value as depicted in Figure 6(c).
For each dimension, the enumeration of all possible factorizations is found and sorted in ascending
order from DRAM to the Register File. This is done for each loop variableC ,W , and P with differ-
ent encoding representations. Figures 6(d) and (e) illustrate the encoding of tilings and loop orders.
After a loop order has been determined for each level in the memory hierarchy, it is repartitioned
by the dimension and encoded in ascending order of storage level. The genes parallelization
and bypass are encoded with 1 and 0, respectively, as the given architecture maps the data
spatially across the PEs and accommodates all types of data on each level of the memory
hierarchy.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:11

Fig. 6. Gene encoding example of the 1-dimensional convolution layer from Figure 1.

The encoding of the hardware parameters follows the encoding of the software mapspace and
represents the number or size of each hardware component. Figure 6(b) shows the parameter space
for an architecture with a parametrizable number of PEs and a configurable size of a global buffer
memory. The size of the input, weight, and accumulation buffer and the memory bandwidth can
be additionally configured.

The presented approach combines the hardware configuration and the software mapspace into
a single chromosome to obtain a joint encoding. It is worth noting that the encoding does not incur
any constraints on the dependency between hardware configurations and software mappings. For
example, the validity of a software mapping depends on the size of each hardware component of
a given configuration. Invalid encodings are dealt within the evaluation phase.

3.3 Network Formulation

Neural networks can be broken down into discrete layers based on the employed operators.
The computation of each operator, such as 2D convolutions, depthwise convolutions, or fully-
connected layer, can basically be expressed with a matrix multiplication with different dimensions.
It may be desirable to represent the mapspace of the different operators with unequal encoding
lengths. Moreover, the different dimensions of individual layers require a separate exploration of
the mapspaces, even if the computational operator is the same. Thus, we consider the mapping of
layers as a set of heterogeneous problems that require different sizes and types of encodings to
fully explore the entire mapspace.

On the other hand, a unified construction of the software mapspace and the architecture design
space is required to guide the search toward the globally optimal solution. To deal with the varying
properties of different layers yet enable a global search, we employ and extend the PIM to fulfill
the following characteristics:

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



30:12 J. Kwon et al.

— Islands shall allow distinct encodings to express heterogeneous problems.
— The PIM assembles the heterogeneous islands into a unified mapspace.
— Migration between heterogeneous islands shall not violate the predefined encodings.

The following properties make PIMs suitable for our search problem:

— The gene encoding of the software mapping depends on the operator of a given layer while
the hardware configuration is shared across all islands.

— The topology connects the individual layers’ mapspaces and introduces population diversity
through migration.

The first property implies that the software mapping is local information that is only valid on
a specific layer while the hardware configuration is global information. In other words, the in-
compatibility between different islands can be solved by limiting migration to exchange hardware
configurations only. This allows each island to preserve its diversity and maintain valid and ef-
ficient mappings, while the hardware configurations can be shared through the topology of the
PIM. This fits a network comprised of multiple operators with variable lengths of encodings into
a single PIM.

The second property is crucial in finding the best hardware configuration across the network.
During the evolution of the PIM, the best-performing hardware configurations are shared through
the PIM topology and distributed to multiple layers. This ensures that promising candidates in the
hardware design space have a higher chance of being chosen as a migrant and guides the search
towards the global optima.

3.4 Hardware Recommendation

A major challenge of the architecture DSE is the sparsity of the Pareto-approximated solutions
due to the large dimensionality of the design space and limited budget of evaluations. This is
shown in more detail in Figure 7(a). On each island of the PIM, Pareto-approximated solutions for
a given layer are found that encode the hardware and software mapping as described earlier. The
Pareto-approximated set of potential solutions does include configurations that are suboptimal
or can miss configurations on the Pareto set because of the limited exploration of the parameter
space. The more heterogeneous islands (i.e., layers) a network is composed of, the lower the
likelihood that a specific hardware configuration is present in the approximated Pareto fronts of
all individual islands.

Previous approaches heuristically derive the final architecture by choosing the maximum of
each individual hardware parameter from the set of layers and obtaining the overall performance of
the network by computing new software mappings for this all-encompassing architecture [41, 42].
Such an approach, however, tends to lead to area-intensive and energy-inefficient configurations.
In the presented work, we instead conduct a global hardware configuration exploration by esti-
mating the overall performance of a given architecture design based on the Pareto-approximated
solutions. Since the multi-objective algorithm guides the search, the range of the objectives has
already been determined by the ideal and the nadir point. This enables us to estimate the value
of missing objectives to a reasonable value (Figure 7(b)). In other words, SENNA estimates the
performance metrics of unknown architectures to be no worse than the so-far observed worst
performance, i.e., the nadir point. These estimates are automatically updated if a given hardware
configuration is later discovered to be in the Pareto-approximated set. Estimating performance
metrics from nadir points can be imprecise if the Pareto set is sparsely populated. Such a situation
can occur when the search is not thoroughly conducted on the initial generation or the design
space is filled with a large portion of infeasible points. In such a case, the missing objectives are
compensated by the worst observed values from another layer’s Pareto-approximated set.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:13

Fig. 7. Estimation of overall performance through nadir points.

The estimation of the overall performance not only exhibits a convergence towards the Pareto-
optimal solutions on individual layers but also approaches the global best hardware configuration
for a given network. SENNA monitors the convergence of the PIM according to the estimated
overall performance and chooses the candidates of potentially good hardware configurations. The
fine-tuning phase is conducted on the best hardware configurations found during the global search
phase to converge on one or a few hardware configurations and software mappings that are opti-
mal with respect to the entire network.

3.5 Special Operators

PIM allows the evolution of multiple islands in parallel and improves the quality of the solution
by interleaving exploration and exploitation. In our approach, a multi-objective genetic algorithm
was chosen as the evolution engine. Figure 8 illustrates the encoding of the design parameters and
the supported operators. Figure 8(a) shows the encoding of the hardware and software mapspace
choices to the chromosomes of a local population. Figure 8(b) illustrates crossover and mutation
operators within a local population. These operators depend on three parameters: the probabil-
ity of crossover, the probability of mutation, and the size of the population. Figure 8(c) and (d)
illustrates the two possible migration scenarios. For migrations between islands with the same

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



30:14 J. Kwon et al.

Fig. 8. Gene encoding and special operators.

software mapspaces, chromosomes are compatible and can be migrated and re-used directly as
shown in Figure 8(c). However, when migration occurs between the heterogeneous islands with
different software parameter spaces, the chromosomes of the migrants are incompatible. As shown
in Figure 8(d), we migrate only the hardware mapping and discard the software mapping since the
hardware genes are globally compatible across the islands. The missing genes are compensated by
copying the parameters of an existing configuration from the local population of the destination
island.

To summarize, SENNA’s migration algorithm performs the following steps for each new
generation:

(1) Choose random source and destination islands and select migrants based on elitism.
(2) Check if the source and destination island have compatible software mapspaces.
(3) If yes, the software encoding of all migrants is kept. Go to step 6.
(4) Otherwise, the software mapping of the migrants are initialized with mappings from mem-

bers of the destination island’s population.
(5) Reevaluate the fitness of the migrants’ new chromosomes on the destination island.
(6) Merge the migrants with the population and update the population based on elitism.
(7) Proceed to the evolution phase.

4 Evaluation

This section evaluates SENNA with three parametrizable architectures and four neural networks.
We begin with the analysis of SENNA’s performance with respect to the recommended hardware
configuration for a given network. We then present the evaluation of Pareto-approximated
solutions and discuss insights from the design while comparing SENNA to an Oracle scheme and
the state-of-the-art, DiGamma [26].

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:15

Table 2. Available Design Choices of the Architectures

Architectures HW components Accelerator Design Choices

Eyeriss
PEs

14,28,42,56,70,84,98,112,126,140,154,168,182,
196,210,224,238,252,266,280,294,308,322,336

Buffers (kB) 4,8,12,16,20,24,28,32

DianNao
PEs 256,288,320,352,384,416,448

Buffers (B)
256,384,512,640,768,896,1024,1152

1280,1408,1536,1664,1792,1920,2048

Simba
PEs 2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32

Buffers (B) 1024,1536,2048,2560,3072,3584,4096

4.1 Evaluation Environment

The search metrics such as performance, energy, and die area are computed with two parametriz-
able architecture simulation environments built into two independent open-source accelerator
infrastructures, Timeloop [39] and Maestro [29]. These frameworks model the execution of a
neural network on a parametrizable accelerator hardware instance and extract several metrics.
Both frameworks employ microarchitectural models to obtain the energy requirements, the
total execution cycles, the hardware utilization, and the die area. Timeloop and Maestro differ
significantly with respect to the supported architecture descriptions, the search space encoding,
and the design constraints. SENNA can work with both environments as a backend to extract the
performance metrics of a hardware/software configuration.

SENNA and the baseline approaches are evaluated with three different parametrizable hard-
ware platforms and four neural networks. The hardware platforms include Eyeriss [11], DianNao
[8], and Simba [44]. Table 2 lists the parameter space for the architectures. All architectures are
parametrizable with respect to the number of PEs and the on-chip buffer size. The evaluated neural
networks are ResNet50 (53 layers) [21], VGG16 (13 layers) [46], MobileNet-V2 (52 layers) [43], and
MnasNet (52 layers) [50].

The presented evolutionary PIM-based algorithm is implemented in Pagmo [4], an open-source
library for parallel optimization. To support the techniques discussed in this work, we extend
Pagmo as follows. First, we have modified the multi-objective optimization solver to support con-
straints and deal with infeasible encodings. Second, we have improved the implementation of the
PIM to support heterogeneous islands and tailored migration.

4.2 Search Algorithm and PIM Configurations

The search is guided by the evolutionary Non-dominated Sorting Genetic Algorithm (NSGA-

II) [16], a representative and widely used multi-objective algorithm. A neural network is mapped
into a PIM as follows: In the first step, we isolate all unique layers with respect to their operators
and parameters. For each unique layer, four islands are allocated to increase the population
diversity and minimize the likelihood of getting stuck in local minima. Each island is initialized
with a population size of 100 chromosomes. The search is conducted for a total of 100 generations
with a crossover probability of 95% and a mutation probability of 70%. The mutation probability
is relatively high compared to conventional genetic algorithms because the design space contains
many invalid configurations.

The evolutionary algorithm runs in two phases, the global search and the fine-tuning phase
(Section 3.1). When the first phase completes, the best configurations for each layer are combined
and form the initial population of the fine-tuning phase. In this evaluation, each island in the global
search phase is initially seeded with 100 chromosomes. After an evolution over 50 generations,

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



30:16 J. Kwon et al.

Fig. 9. Exhaustive evaluation of performance metrics of MobileNet-V2 on the Eyeriss architecture. Figures

(a), (b), and (c) visualize the heatmap for the individual metrics energy, latency (cycles), and die area. Figure

(d) shows the average of the individual metrics normalized to 1. Blue is better.

the best 5 candidates of each layer are selected to seed the initial population of the fine-tuning
phase which evolves for another 50 generations. These values have empirically been found to
work reasonably well with the employed parametrizable hardware architectures and networks
but may need to be tuned to different environments.

4.3 Architecture Design Space Search Validation

We validate the architecture design search by analyzing and comparing whether the identified
hardware design points match the expected best hardware designs. We demonstrate SENNA’s hard-
ware recommendation for MobileNet-V2 [43] on the Eyeriss architecture [11]. The objectives are
visualized using heatmaps in this two-dimensional parameter space. The ground truth is collected
by an initial exhaustive search through all possible parameter configurations. Figure 9(a), (b), and
(c) shows the performance with respect to a single metric energy, latency (cycles), and chip die area.

We observe that the optimal hardware design point differs according to the target metric. For
example, the design point (224 PEs, 8 kB buffer) shows the best value for the metrics energy and
cycles. However, this configuration does not dominate the configuration (112 PEs, 8 kB buffer) since
it requires a significantly larger die area. Figure 9(d) visualizes the quality of each hardware design
point in consideration of competing objectives. To enhance the interpretability, the objectives are
linearly scaled to the range [0,1) before visualization and aggregated using the average of all three
metrics [37]. The heatmap clearly shows the design points for which all three metrics achieve good
values and are suitable to represent the tradeoffs among the objectives. The selection of the final
architecture configuration can be assisted by weighing the individual metrics differently.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:17

Fig. 10. Effect of the PIM island connectivity on the identified best hardware configurations.

4.4 PIM Topology

Next, we evaluate the impact of different interconnection topologies of the PIM on the recom-
mended hardware and the runtime of the search algorithm. The results are shown in Figure 10.
The upper row shows the resident count, that is, the number of hardware configurations found in
the Pareto-approximated sets of unique layers. The darker a point, the more often this hardware
configuration appeared in the Pareto-approximated sets. The more frequently a hardware config-
uration appears in the Pareto-approximated set, the higher the likelihood that this configuration
yields higher performance. The lower row visualizes the estimated overall runtime. The desired
result is a heatmap that shows the darkest blue for the configurations that have been identified as
optimal through an exhaustive search in Figure 9(d).

Figure 10(a) and (d) shows the results for a PIM with unconnected islands, i.e., there is no migra-
tion between islands. We observe that there is little convergence on the best hardware configura-
tion not only after the global search—Figure 10(a)—thus, results in inaccurate estimation of overall
runtime in Figure 10(d). This is an expected result since each island individually optimizes only for
its layer parameters. In Figure 10(b) and (e), islands with identical parameters are connected with a
ring, which is the topology used for the fine-tuning phase as shown in Figure 5. This allows the ex-
change of full chromosomes and helps the connected populations to escape from local minima and
converge towards one optimal configuration per layer. Compared to the unconnected PIM, the con-
vergence of the global search is better; however, the absence of the connection between different
layers dilutes the results. Figure 10(c) and (f), finally, visualizes the result of a fully-connected PIM
(Figure 5). SENNA’s tailored allows the exchange of hardware configurations that are promising

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



30:18 J. Kwon et al.

Fig. 11. Comparing the best identified architecture designs with the ideal case. Figure 11(a), (d), and (g)

scales the ground truth of energy, cycles, and area into equal range and visualizes the best HW design

points. Figure 11(b), (e), and (h) illustrates the number of HW design configurations found on pareto sets of

individual layers (blue: all layers on the network map to the same best hardware configuration.) Figure 11(c),

(f), and (i) illustrates the estimated overall runtime (blue is better.) Red box indicates the best hardware

configuration found after the fine tuning phase.

with respect to a single island (i.e., layer) with all other islands and thus converge towards globally
optimal configurations. We observe good convergence on the two configurations that have been
identified as optimal by exhaustive search (112 and 224PEs with a 4 and 8 KB buffer). We note
that while resident count shows the absence of the mapping that hinders to calculate the overall

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:19

Fig. 12. Pareto front generated by SENNA_MO, SENNA_EDP, and ORACLE for different networks on Eyeriss Ar-

chitecture. The size of the design point describes the area size.

performance, an approximated objectives of missing mappings enable us to closely capture the
globally optimal configurations.

4.5 Hardware Recommendation

Since multiple options exist for the best hardware design, SENNA provides multiple best candi-
dates for hardware configuration. Figure 11 compares the recommended hardware configurations
with the results from the exhaustive search. Figure 11(a), (d), and (g) illustrates the quality archi-
tecture designs obtained through exhaustive search. Figure 11(b), (e), and (h) indicates the number
of architectural designs discovered from the Pareto-approximated set in a layer-wise manner. It is
worth to note that in Figure 11(b), and (e), the design point (42 PEs, 4 kB buffer) is found to be non-
dominant on every layer though it is incapable of delivering the best performance. The rationale
behind this selection is the non-dominance relation between objectives of the Pareto-approximated
set, which has the lowest area despite the higher energy and runtime. The presence of these spu-
rious solutions can misguide the multi-objective algorithm to the suboptimal design point, which
reduces the chance of finding the globally optimized configurations. Hence we consider multiple
design points as the best hardware configurations to embrace optimal design points and conduct
the fine-tuning phase, as shown in Figure 12. This can be extended in the future by a search method

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



30:20 J. Kwon et al.

Table 3. Comparison of the Hardware Configurations Found by SENNA and the Oracle in Terms of

Energy Consumption, Die Area, and Performance

Network MobileNet VGG16 ResNet50

Architecture Eyeriss Diannao Simba Eyeriss Diannao Simba Eyeriss Diannao Simba

Energy (m J )

SENNA_MO 3.93 15.15 5.71 76.37 1,034.1 169.92 21.86 118.45 19.13

SENNA_EDP 3.38 15.15 4.19 79.14 225.3 103.46 20.39 80.3 25.03

ORACLE 5.52 15.13 15.73 108.26 2,177.3 NaN 27.91 423.43 NaN

Area (mm2)

SENNA_MO 1.85 0.37 1.76 1.53 0.37 1.73 1.22 0.37 1.83

SENNA_EDP 1.61 0.37 3.09 1.53 0.37 2.23 1.22 0.37 1.87

ORACLE 1.85 0.37 1.14 1.53 0.37 NaN 1.22 0.37 NaN

Cycles (104K )

SENNA_MO 2.43 1.69 15.58 158.74 48.5 547.36 29.91 10.89 97.7

SENNA_EDP 2.01 1.69 10.08 70.77 48.22 411.58 13.22 10.85 82.45

ORACLE 2.64 1.69 31.9 79.56 47.99 NaN 15.91 10.82 NaN

Time (hrs )

SENNA_MO
4 6 9 7 9 9 20 18 27

SENNA_EDP

ORACLE 14 15 84 27 43 74 47 45 175

Budget (104)

SENNA_MO
53.87 56.49 67.51 70.16 74.23 106.20 147.78 153.26 192.47

SENNA_EDP

ORACLE 54.67 57.28 68.31 71.20 75.27 107.24 150.02 155.51 194.71

The last columns show the search time of the two frameworks. The Timeloop mapper-based Oracle often fails to find

valid configurations for layers on the Simba architecture because of the large ratio of invalid configurations.

to be vigilant on suboptimal configurations and remediate. Figure 11(c), (f), and (i) illustrates the
estimated overall runtime. We observe that the recommendation of the multiple hardware config-
urations based on the estimated overall runtime embraces globally optimal design points.

4.6 Comparison to an Oracle and Related Work

Let us demonstrate the benefit of SENNA’s joint hardware/software configuration search compared
to an Oracle scheme and to State-of-the-Art techniques.

4.6.1 Comparison to Oracle Scheme. We evaluate SENNA with respect to the Oracle scheme
which always selects the best hardware configuration and then consumes the entire budget on
the software mapspace search on the selected hardware configuration. The rationale behind
this scheme is to design a computationally viable approach that replaces exhaustive search with
little optimality loss. With the extremely large design space, an exhaustive search is infeasible
and time-consuming. To enable the comparison with little optimality loss, we design the oracle
scheme which finds the best hardware configurations through iterative search before exploration.

To fully examine the hardware configurations, we start from the size of the budget that
default configuration consumes. Then, it is executed iteratively with doubled budget until the
overall performance converges. Given the best 10% of hardware configurations, the oracle
scheme distributes the evaluation budget and focuses to search for the best possible software
mapping. Oracle scheme employs the Timeloop-mapper as a software mapspace search engine,
since other State-of-the-Arts does not support the exploration on a baseline architectures. Since
Timeloop-mapper shows the best result on the energy-delay product (EDP) metric, SENNA
also supports the EDP as an optimization goal for fair comparison. In the following, we denote the
three-objective version of SENNA (Energy, Area, Cycles) with SENNA_MO and the two-objective
version (EDP, Area) with SENNA_EDP.

Table 3 compares the results of SENNA_MO, SENNA_EDP with ORACLE. We made two main obser-
vations. First, the overall energy and runtime performance of SENNA achieves a Pareto-efficient

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:21

Fig. 13. Comparing SENNA to DiGamma for 2D convolutions on MobileNet-V2.

solution which dominates or is in non-dominance relation compared to the ORACLE. Despite
ORACLE achieves more budget to run a mapspace search on the best HW design, SENNA is capable
of finding the best architecture design and its corresponding mappings. Second, the exploration
in huge design spaces with many infeasible design points allows us to verify the scalability of
SENNA. Simba has a search space of O(1024) filled with invalid configurations. SENNA produces
valid mappings across the network and shows robustness in huge design spaces, while ORACLE
fails to generate mappings layer by layer. Figure 12 shows the distribution of overall energy and
runtime performance with Pareto Front on different networks. With respect to the solutions
of Timeloop, SENNA is capable of finding the best architecture design in the limited budget
of evaluations. SENNA_EDP tends to perform well compared to the SENNA_MO, since SENNA_MO
optimizes on more metrics and includes more spurious solutions which dilute the result.

4.6.2 Comparison to the State-of-the-Art. To show the area and overall performance efficiency,
We compare SENNA_MO with DiGamma [26]. DiGamma requires the constraints on encoding to
respect the workload dimensions, by revising the loop tiling size and bounds under the size of
allocated HW components. To address the complexity of the encoding, SENNA was implemented
to collect the possible encoding set and apply its own encoding scheme. Since the enumeration of
the possible choices is encoded into an integer sequentially, it removes the possibility of infeasible
design points being chosen. Moreover, DiGamma optimizes each layer and suggests its L1 and L2
buffer requirements. We extended DiGamma to derive the maximal architecture as a final architec-
ture design by applying the maximum size of the buffer requirements from the found solutions.

Figure 13(a) and (b) shows the found solution by plotting layers with different dimensions as
the x-axis. DiGamma derives the hardware configuration of (976 PEs, 510 kB L1 buffer, 105 MB
L2 buffer) with an area size of 65.75mm2 while SENNA found the hardware configuration of
(872 PEs, 54 kB L1 buffer, 113 MB L2 buffer) with an area size of 35.80mm2. Overall, SENNA

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



30:22 J. Kwon et al.

Fig. 14. Overall performance improvements of ResNet50 in terms of energy, runtime, and area.

Fig. 15. Normalized overall performance of different DNNs on Maestro.

outperforms the DiGamma both in terms of energy and runtime. In particular, the solution found
by SENNA occupies a 48% smaller area than the configuration of DiGamma. This is possible since
the formulation of the PIM succeeds in segregating the mapspace from the architecture design
space and preserving the superior mappings. Figure 14 compares the found solution of SENNA
and DiGamma on multiple objectives per generation. The improvement is three-fold in runtime
with minimal degradation in energy and area.

Figure 15 compares the normalized overall performance of different DNNs. Multiple normalized
objectives are stacked in the direction of the Y -axis, and SENNA is normalized to the solution of
DiGamma. We found that this work benefits in improving the overall performance of deeper and
wider networks. The solution outperforms the quality of DiGamma as the network goes deeper
with a higher duplication of identical layers. For example, VGG16 has nine unique layers of 13 lay-
ers. It has less duplication on layers with low reusability on found solutions and achieves relatively
less improvement. On the other hand, deeper networks achieve decent performance improvement
by obtaining more chances of reusing the found solutions. ResNet50 has 23 unique layers of 53,
MobileNet-V2 has 27 unique layers of 52, and MnasNet has 33 unique layers of 52, respectively. To
summarize, PIM finds better solutions not only for each layer but also for a given network.

5 Conclusion

While hardware/software co-design has been widely studied for parametrizable neural network
accelerators, finding a practical design that considers the end-to-end network performance under

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.



Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:23

multiple objectives is still an open question. This work presents the SENNA framework that
employs a PIM, which unifies the mapspace to represent a network and optimizes for a given accel-
erator design in a single execution. We harness the unified design space and multi-objective search
to significantly improve the efficiency of the search. A comparison with state-of-the-art mapper
shows that SENNA is able to find better overall configurations in a significantly shorter time.

References

[1] Inpyo Bae, Barend Harris, Hyemi Min, and Bernhard Egger. 2018. Auto-tuning CNNs for coarse-grained reconfig-

urable array-based accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37,

10 (2018), 1–1. DOI:https://doi.org/10.1109/TCAD.2018.2857278

[2] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Abdurrahman Akkas, Yunming Zhang,

Patricia Suriana, Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A polyhedral compiler for expressing fast

and portable code. In Proceedings of the 2019 IEEE/ACM International Symposium on Code Generation and Optimization

(CGO 2019). IEEE, 193–205.

[3] Slim Bechikh, Lamjed Ben Said, and Khaled Ghedira. 2010. Estimating nadir point in multi-objective optimization

using mobile reference points. In Proceedings of the IEEE Congress on Evolutionary Computation. 1–9. DOI:https:

//doi.org/10.1109/CEC.2010.5586203

[4] Francesco Biscani and Dario Izzo. 2020. A parallel global multiobjective framework for optimization: pagmo. Journal

of Open Source Software 5, 53 (2020), 2338. DOI:https://doi.org/10.21105/joss.02338

[5] Christian Blum and Andrea Roli. 2003. Metaheuristics in combinatorial optimization: Overview and conceptual com-

parison. ACM Computing Surveys 35, 3 (2003), 268–308. DOI:https://doi.org/10.1145/937503.937505

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom

Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark

Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,

Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. In Proceedings of the

34th International Conference on Neural Information Processing Systems (NIPS’20). Curran Associates Inc., Red Hook,

NY, USA, Article 159, 25 pages.

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. 2018. DeepLab: Seman-

tic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 40, 4 (2018), 834–848. DOI:https://doi.org/10.1109/TPAMI.2017.

2699184

[8] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier Temam. 2014. DianNao: A

small-footprint high-throughput accelerator for ubiquitous machine-learning. ACM SIGARCH Computer Architecture

News 42, 1 (2014), 269–284. DOI:https://doi.org/10.1145/2654822.2541967g

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen Shen, Leyuan

Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An automated end-to-end

optimizing compiler for deep learning. In Proceedings of the 13th USENIX Conference on Operating Systems Design

and Implementation (OSDI’18). USENIX Association, USA, 579–594.

[10] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. 2020. A survey of accelerator architectures for

deep neural networks. Engineering 6, 3 (2020), 264–274. DOI:https://doi.org/10.1016/j.eng.2020.01.007

[11] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture for energy-efficient dataflow for con-

volutional neural networks. In Proceedings of the 43rd International Symposium on Computer Architecture (ISCA’16).

IEEE, 367–379. DOI:https://doi.org/10.1109/ISCA.2016.40

[12] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Training deep neural networks with low preci-

sion multiplications. arXiv e-prints (Dec. 2014). https://doi.org/10.48550/arXiv.1412.7024

[13] Teodor Gabriel Crainic and Michel Toulouse. 2003. Parallel Strategies for Meta-Heuristics. Springer US, Boston, MA,

475–513. DOI:https://doi.org/10.1007/0-306-48056-5_17

[14] Shail Dave, Youngbin Kim, Sasikanth Avancha, Kyoungwoo Lee, and Aviral Shrivastava. 2019. DMazeRunner: Exe-

cuting perfectly nested loops on dataflow accelerators. ACM Transactions on Embedded Computing Systems 18, 5s,

Article 70 (2019), 27 pages. DOI:https://doi.org/10.1145/3358198

[15] Kalyanmoy Deb, Shamik Chaudhuri, and Kaisa Miettinen. 2006. Towards estimating nadir objective vector us-

ing evolutionary approaches. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computa-

tion (GECCO’06). Association for Computing Machinery, New York, NY, USA, 643–650. DOI:https://doi.org/10.1145/

1143997.1144113

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.

https://doi.org/10.1109/TCAD.2018.2857278
https://doi.org/10.1109/CEC.2010.5586203
https://doi.org/10.21105/joss.02338
https://doi.org/10.1145/937503.937505
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1145/2654822.2541967g
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.48550/arXiv.1412.7024
https://doi.org/10.1007/0-306-48056-5_17
https://doi.org/10.1145/3358198
https://doi.org/10.1145/1143997.1144113


30:24 J. Kwon et al.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Transactions on Evolutionary Computation 6, 2 (2002), 182–197. DOI:https://doi.org/10.1109/4235.996017

[17] Li Du, Yuan Du, Yilei Li, Junjie Su, Yen-Cheng Kuan, Chun-Chen Liu, and Mau-Chung Frank Chang. 2017. A re-

configurable streaming deep convolutional neural network accelerator for Internet of Things. IEEE Transactions on

Circuits and Systems I: Regular Papers 65, 1 (2017), 198–208.

[18] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and Olivier

Temam. 2015. ShiDianNao: Shifting vision processing closer to the sensor. In Proceedings of the 2015 ACM/IEEE

42nd Annual International Symposium on Computer Architecture (ISCA). 92–104. DOI:https://doi.org/10.1145/2749469.

2750389

[19] Yonggan Fu, Yongan Zhang, Yang Zhang, David Cox, and Yingyan Lin. 2021. Auto-NBA: Efficient and effective search

over the joint space of networks, bitwidths, and accelerators. In Proceedings of the 38th International Conference on

Machine Learning. Marina Meila and Tong Zhang (Eds.), Proceedings of Machine Learning Research, Vol. 139, PMLR,

3505–3517. Retrieved from https://proceedings.mlr.press/v139/fu21d.html

[20] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. 2017. TETRIS: Scalable and efficient neural

network acceleration with 3D memory. In Proceedings of the 22nd International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS’17). Association for Computing Machinery, New York,

NY, USA, 751–764. DOI:https://doi.org/10.1145/3037697.3037702

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22] Kartik Hegde, Po-An Tsai, Sitao Huang, Vikas Chandra, Angshuman Parashar, and Christopher W. Fletcher. 2021.

Mind mappings: Enabling efficient algorithm-accelerator mapping space search. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’21).

Association for Computing Machinery, New York, NY, USA, 943–958. DOI:https://doi.org/10.1145/3445814.3446762

[23] Qijing Huang, Minwoo Kang, Grace Dinh, Thomas Norell, Aravind Kalaiah, James Demmel, John Wawrzynek, and

Yakun Sophia Shao. 2021. CoSA: Scheduling by constrained optimization for spatial accelerators. In Proceedings of

the 48th Annual International Symposium on Computer Architecture (ISCA’21). IEEE, 554–566. DOI:https://doi.org/10.

1109/ISCA52012.2021.00050

[24] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. 2020. ConfuciuX: Autonomous hardware resource assign-

ment for DNN accelerators using reinforcement learning. In Proceedings of the 53rd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO. IEEE, 622–636.

[25] Sheng-Chun Kao and Tushar Krishna. 2020. GAMMA: Automating the HW mapping of DNN models on accelera-

tors via genetic algorithm. In Proceedings of the 39th International Conference on Computer-Aided Design (ICCAD’20).

Article 44, 9 pages. DOI:https://doi.org/10.1145/3400302.3415639

[26] Sheng-Chun Kao, Michael Pellauer, Angshuman Parashar, and Tushar Krishna. 2022. DiGamma: Domain-aware ge-

netic algorithm for HW-mapping Co-optimization for DNN accelerators. In Proceedings of the 2022 Conference and

Exhibition on Design, Automation and Test in Europe (DATE’22). European Design and Automation Association, Leu-

ven, BEL, 232–237.

[27] Daniel Martin Katz, Michael James Bommarito, Shang Gao, and Pablo Arredondo. 2024. Gpt-4 passes the bar exam.

Philosophical Transactions of the Royal Society A 382, 2270 (2024), 20230254.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ImageNet classification with deep convolutional neu-

ral networks. Communications of the ACM 60, 6 (2017), 84–90. DOI:https://doi.org/10.1145/3065386

[29] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael Pellauer, and Angshuman Parashar.

2020. MAESTRO: A data-centric approach to understand reuse, performance, and hardware cost of DNN mappings.

IEEE Micro 40, 3 (2020), 20–29. DOI:https://doi.org/10.1109/MM.2020.2985963

[30] Yuhong Li, Cong Hao, Xiaofan Zhang, Xinheng Liu, Yao Chen, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. 2020.

EDD: Efficient differentiable DNN architecture and implementation co-search for embedded AI solutions. In Proceed-

ings of the 2020 57th ACM/IEEE Design Automation Conference (DAC). 1–6. DOI:https://doi.org/10.1109/DAC18072.

2020.9218749

[31] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32] Tao Luo, Shaoli Liu, Ling Li, Yuqing Wang, Shijin Zhang, Tianshi Chen, Zhiwei Xu, Olivier Temam, and Yunji Chen.

2017. DaDianNao: A neural network supercomputer. IEEE Transactions on Computers 66, 1 (2017), 73–88. DOI:https:

//doi.org/10.1109/TC.2016.2574353

[33] Hyemi Min, Jungyoon Kwon, and Bernhard Egger. 2021. Fast generation of optimized execution plans for parame-

terizable CNN accelerators: Work-in-progress. In Proceedings of the 2021 International Conference on Compilers, Ar-

chitectures, and Synthesis for Embedded Systems (CASES’21). Association for Computing Machinery, New York, NY,

USA, 1–2. DOI:https://doi.org/10.1145/3451939.3477593

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.

https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/2749469.2750389
https://proceedings.mlr.press/v139/fu21d.html
https://doi.org/10.1145/3037697.3037702
https://doi.org/10.1145/3445814.3446762
https://doi.org/10.1109/ISCA52012.2021.00050
https://doi.org/10.1145/3400302.3415639
https://doi.org/10.1145/3065386
https://doi.org/10.1109/MM.2020.2985963
https://doi.org/10.1109/DAC18072.2020.9218749
https://doi.org/10.1109/TC.2016.2574353
https://doi.org/10.1145/3451939.3477593


Unified HW/SW Space Exploration for Parametrizable Neural Network Accelerators 30:25

[34] Hyemi Min, Jungyoon Kwon, and Bernhard Egger. 2023. Flexer: Out-of-order scheduling for multi-NPUs. In Proceed-

ings of the 2023 International Symposium on Code Generation and Optimization (CGO’23). ACM, New York, NY, USA,

12 pages. DOI:https://doi.org/10.1145/3579990.3580025

[35] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2016. Pruning Convolutional Neural Net-

works for Resource Efficient Transfer Learning. CoRR (2016).

[36] Luigi Nardi, Artur Souza, David Koeplinger, and Kunle Olukotun. 2019. HyperMapper: A practical design space

exploration framework. In Proceedings of the 2019 IEEE 27th International Symposium on Modeling, Analysis, and Sim-

ulation of Computer and Telecommunication Systems (MASCOTS). 425–426. DOI:https://doi.org/10.1109/MASCOTS.

2019.00053

[37] Alireza Nazemi, Andrew H. Chan, and Xin Yao. 2008. Selecting representative parameters of rainfall-runoff models

using multi-objective calibration results and a fuzzy clustering algorithm. In Proceedings of the BHS 10th National

Hydrology Symposium, Exeter, UK. 13–20.

[38] Kristian Robert Nichols. 2003. A Reconfigurable Computing Architecture for Implementing Artificial Neural Networks

on FPGA. Ph. D. Dissertation. University of Guelph.

[39] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A. Ying, Anurag Mukkara, Rang-

harajan Venkatesan, Brucek Khailany, Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A systematic approach

to DNN accelerator evaluation. In Proceedings of the 2019 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS). 304–315. DOI:https://doi.org/10.1109/ISPASS.2019.00042

[40] Mario Porrmann, Ulf Witkowski, Heiko Kalte, and Ulrich Ruckert. 2002. Implementation of artificial neural networks

on a reconfigurable hardware accelerator. In Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and

Network-based Processing. IEEE, 243–250.

[41] Enrico Russo, Maurizio Palesi, Salvatore Monteleone, Davide Patti, Giuseppe Ascia, and Vincenzo Catania. 2022.

MEDEA: A multi-objective evolutionary approach to DNN hardware mapping. In Proceedings of the 2022 Design,

Automation and Test in Europe Conference and Exhibition (DATE). 226–231. DOI:https://doi.org/10.23919/DATE54114.

2022.9774747

[42] Enrico Russo, Maurizio Palesi, Davide Patti, Salvatore Monteleone, Giuseppe Ascia, and Vincenzo Catania. 2023. Mul-

tiobjective end-to-end design space exploration of parameterized DNN accelerators. IEEE Internet of Things Journal

10, 2 (2023), 1800–1812. DOI:https://doi.org/10.1109/JIOT.2022.3209401

[43] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. MobileNetV2: In-

verted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR).

[44] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer, Matthew Fojtik, Nan Jiang, Ben Keller,

Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel

Emer, C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. 2019. Simba: Scaling deep-learning inference

with multi-chip-module-based architecture. In Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO’52). Association for Computing Machinery, New York, NY, USA, 14–27. DOI:https:

//doi.org/10.1145/3352460.3358302

[45] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrit-

twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep

neural networks and tree search. Nature 529, 7587 (2016), 484–489.

[46] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015. Conference

Track Proceedings.

[47] Zbigniew Skolicki. 2005. An analysis of island models in evolutionary computation. In Proceedings of the 7th Annual

Workshop on Genetic and Evolutionary Computation (GECCO’05). Association for Computing Machinery, New York,

NY, USA, 386–389. DOI:https://doi.org/10.1145/1102256.1102343

[48] Morgan Stuart and Milos Manic. 2017. Survey of progress in deep neural networks for resource-constrained ap-

plications. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE,

7259–7266.

[49] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

[50] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V. Le. 2019.

MnasNet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR).

[51] Miheer Vaidya, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan. 2022. Comprehensive accelerator-

dataflow co-design optimization for convolutional neural networks. In Proceedings of the 2022 IEEE/ACM

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.

https://doi.org/10.1145/3579990.3580025
https://doi.org/10.1109/MASCOTS.2019.00053
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.23919/DATE54114.2022.9774747
https://doi.org/10.1109/JIOT.2022.3209401
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1145/1102256.1102343


30:26 J. Kwon et al.

International Symposium on Code Generation and Optimization (CGO). 325–335. DOI:https://doi.org/10.1109/

CGO53902.2022.9741281

[52] Rangharajan Venkatesan, Yakun Sophia Shao, Miaorong Wang, Jason Clemons, Steve Dai, Matthew Fojtik, Ben Keller,

Alicia Klinefelter, Nathaniel Pinckney, Priyanka Raina, Yanqing Zhang, Brian Zimmer, William J. Dally, Joel Emer,

Stephen W. Keckler, and Brucek Khailany. 2019. MAGNet: A modular accelerator generator for neural networks.

In Proceedings of the 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1–8. DOI:https:

//doi.org/10.1109/ICCAD45719.2019.8942127

[53] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A polyhedral compiler for high-performance systolic ar-

rays on FPGA. In Proceedings of the 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

(FPGA’21). Association for Computing Machinery, New York, NY, USA, 93–104. DOI:https://doi.org/10.1145/3431920.

3439292

[54] Qingcheng Xiao, Size Zheng, Bingzhe Wu, Pengcheng Xu, Xuehai Qian, and Yun Liang. 2021. HASCO: Towards agile

hardware and software co-design for tensor computation. In Proceedings of the 48th Annual International Symposium

on Computer Architecture (ISCA’21). IEEE, 1055–1068. DOI:https://doi.org/10.1109/ISCA52012.2021.00086

[55] Pengfei Xu, Xiaofan Zhang, Cong Hao, Yang Zhao, Yongan Zhang, Yue Wang, Chaojian Li, Zetong Guan, Deming

Chen, and Yingyan Lin. 2020. AutoDNNchip: An automated DNN chip predictor and builder for both FPGAs and

ASICs. In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA’20).

Association for Computing Machinery, New York, NY, USA, 40–50. DOI:https://doi.org/10.1145/3373087.3375306

[56] Dan Zhang, Safeen Huda, Ebrahim Songhori, Kartik Prabhu, Quoc Le, Anna Goldie, and Azalia Mirhoseini. 2022. A

full-stack search technique for domain optimized deep learning accelerators. In Proceedings of the 27th ACM Interna-

tional Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’22). Associa-

tion for Computing Machinery, New York, NY, USA, 27–42. DOI:https://doi.org/10.1145/3503222.3507767

[57] Qingfu Zhang and Hui Li. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE

Transactions on Evolutionary Computation 11, 6 (2007), 712–731. DOI:https://doi.org/10.1109/TEVC.2007.892759

[58] Xiaofan Zhang, Hanchen Ye, Junsong Wang, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. 2020.

DNNExplorer: A Framework for modeling and exploring a novel paradigm of FPGA-Based DNN accelerator. In

Proceedings of the 39th International Conference on Computer-Aided Design (ICCAD’20). Association for Computing

Machinery, New York, NY, USA, Article 61, 9 pages. DOI:https://doi.org/10.1145/3400302.3415609

[59] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. FlexTensor: An automatic schedule explo-

ration and optimization framework for tensor computation on heterogeneous system. In Proceedings of the Twenty-

Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASP-

LOS’20). Association for Computing Machinery, New York, NY, USA, 859–873. DOI:https://doi.org/10.1145/3373376.

3378508

[60] Gaofeng Zhou, Jianyang Zhou, and Haijun Lin. 2018. Research on NVIDIA deep learning accelerator. In Proceed-

ings of the 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). 192–195.

DOI:https://doi.org/10.1109/ICASID.2018.8693202

[61] Eckart Ziztler, Marco Laumanns, and Lothar Thiele. 2002. SPEA2: Improving the strength Pareto evolutionary algo-

rithm for multi objective optimization. Evolutionary Methods for Design, Optimization, and Control (2002), 95–100.

Received 26 December 2023; revised 4 August 2024; accepted 17 October 2024

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 2, Article 30. Publication date: January 2025.

https://doi.org/10.1109/CGO53902.2022.9741281
https://doi.org/10.1109/ICCAD45719.2019.8942127
https://doi.org/10.1145/3431920.3439292
https://doi.org/10.1109/ISCA52012.2021.00086
https://doi.org/10.1145/3373087.3375306
https://doi.org/10.1145/3503222.3507767
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1145/3400302.3415609
https://doi.org/10.1145/3373376.3378508
https://doi.org/10.1109/ICASID.2018.8693202

