ADaPS: Adaptive Data Partitioning to Parallelize CNN
Inference on Resource-Constrained Hardware

Jaume Mateu Cuadrat
Seoul National University
Seoul, South Korea
jaume@csap.snu.ac.kr

Abstract

The growing adoption of Al applications has led to an in-
creased demand for deploying neural networks on diverse
device platforms. However, even modest networks now re-
quire specialized hardware for efficient execution due to
their rising computational cost. To address this, distributed
execution across connected, resource-constrained devices is
gaining importance. While prior work relies on empirical
models or supports limited partitioning, we present ADaPS,
a novel framework for distributing Convolutional Neural
Networks (CNNs) inference workloads across heterogeneous
embedded devices. Our analytical model partitions the height
and width dimensions of 4D tensors and explores layer fu-
sion opportunities, accounting for compute, memory, and
communication constraints. ADaPS efficiently explores the
vast partitioning space using a tree-based hybrid optimiza-
tion algorithm combining Alpha-Beta pruning and dynamic
programming. Evaluations on multiple CNNs and device con-
figurations show that ADaPS is able to improve inference
latency by up to 1.2X on average while significantly reducing
data transfers compared to state-of-the-art methods.

CCS Concepts: « Computing methodologies — Distributed
artificial intelligence; Parallel programming languages; Game
tree search; Heuristic function construction.

Keywords: Convolutional network, data partitioning, min-
max, parallelization

ACM Reference Format:
Jaume Mateu Cuadrat and Bernhard Egger. 2025. ADaPS: Adap-
tive Data Partitioning to Parallelize CNN Inference on Resource-

Constrained Hardware. In Proceedings of the 26th ACM SIGPLAN/SIGBED

International Conference on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES ’25), June 16—17, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3735452.3735532

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.

LCTES ’25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1921-9/25/06
https://doi.org/10.1145/3735452.3735532

Bernhard Egger
Seoul National University
Seoul, South Korea
bernhard@csap.snu.ac.kr

1 Introduction

Initially valued for their object detection capabilities in im-
ages and video streams, CNNs now power critical appli-
cations across diverse domains including medical diagnos-
tics [3], intelligent surveillance systems [16], and advanced
image processing [2]. Over the past decade, neural networks
have evolved into massive architectures that require billions
of parameters and compute operations. As these networks
continue to grow in complexity, the challenge of efficient
hardware mapping extends beyond small devices to increas-
ingly affect mainstream computing platforms.

For edge devices and mid-range consumer CPUs, even
established networks such as ResNet50 [5] and VGG16 [19]
already strain hardware resources due to their substantial
memory requirements compared to more efficient archi-
tectures like MobileNet [6]. The problem is further exac-
erbated by newer architectures such as NASNet [26] and
Inception v4 [21], which feature complex Directed Acyclic
Graph (DAG) with multiple execution paths, significantly
expanding possible execution orders and complicating opti-
mization.

This paper specifically addresses the needs of end-users
and small-to-medium enterprises that require low-latency
inference capabilities for relatively large networks on com-
modity hardware. In these scenarios, batch sizes are typically
limited, and minimizing inference latency is the primary
concern. Existing approaches to this challenge generally fall
into two categories: model partitioning and data partitioning.
Model partitioning distributes different layers of the CNN
across multiple devices [4, 10, 13, 22], while data partition-
ing divides the input tensors within individual layers across
devices [7, 11, 12, 20, 23-25]. A number of implementation
strategies have been proposed. Some techniques employ a
master node for coordination [11, 20, 25], others determine
partitioning during compilation [7, 12], and more sophisti-
cated approaches consider both device heterogeneity and
inter-device communication costs [23, 24].

While data partitioning can effectively reduce inference
latency, determining the optimal division strategy across the
tensor dimensions remains a critical challenge. CNN tensors
can potentially be partitioned along four dimensions: input
channels, output channels, height, and width. Most existing
approaches, including this work, focus on height and width
partitioning due to its generality.

https://orcid.org/0000-0003-0560-4180
https://orcid.org/0000-0002-6645-6161
https://doi.org/10.1145/3735452.3735532
https://doi.org/10.1145/3735452.3735532
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3735452.3735532

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

Jaume Mateu Cuadrat and Bernhard Egger

Table 1. Comparison of related work. H, W, and C denote partitioning in the Height, Width, and Channel dimension.

Paper Search Type Heterogeneous Devices | Partitioning Directions | Communication | Layer Fusion
MoDNN [11] Layer by layer No HorW Centralized No
DeepThings [25] Fixed partition No HorW Centralized No
DeeperThings [20] | Fixed partition No C Centralized Yes
CoEdge [23] Layer by layer Yes HorWwW Centralized No
DeepSlicing [24] Grouped layers Yes w Centralized Yes
EdgeFlow [7] Analytical model Yes H Decentralized Yes
BBGraP [12] Fixed partition No HorWorC Decentralized No
ADaPS (this work) | Analytical model Yes HorW Decentralized Yes

The presented framework, ADaPS, builds upon and ex-
tends state-of-the-art approaches through several key inno-
vations. ADaPS automates the exploration of a comprehen-
sive search space across all supported tensor dimensions for
heterogeneous device configurations, while identifying opti-
mal partitioning strategies for each layer that simultaneously
minimize data transfer overhead and redundant computa-
tions. The framework employs advanced search techniques
inspired by Minmax [17] and Alpha-beta pruning [8] game
search algorithms to efficiently navigate the complex solu-
tion space. Furthermore, ADaPS incorporates detailed net-
work characteristics (bandwidth, latency) and device-specific
computational capabilities to guide optimization decisions,
enabling support for flexible hardware combinations.

To demonstrate the practical applicability of ADaPS in
real-world heterogeneous edge environments, we evaluate
the performance of the presented framework across two to
four-devices configurations comprising various Raspberry Pi
boards.

In summary, the contributions of this work are

o A flexible technique for inference workload partition-
ing along a tensor’s height and width dimensions into
partitions for heterogeneous edge device configura-
tions.

o An efficient search space exploration mechanism using
a specialized tree structure and pruning methods that
significantly reduce optimization time.

e A exploration of opportunities for layer fusion among
the partitions that considers the end-to-end character-
istics of a CNN architecture to maximize performance.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 introduces the key
concepts underlying our implementation. Section 4 describes
the ADaPS framework and its operation in detail. Section 5
evaluates our approach against state-of-the-art methods, and
Section 6 concludes this work.

2 Related Work

Recent research has focused on improving inference latency
through three primary approaches: data partitioning, model

partitioning, and optimization techniques (Table 1). Model
partitioning has emerged as the prevalent strategy, with sig-
nificant contributions from works such as Combining [13],
and Coin [22], and other notable systems [4, 10]. Other tech-
niques explore data partitioning, including MoDNN [11],
DeepThings [25], DeeperThings [20], CoEdge [23], DeepSlic-
ing [24], EdgeFlow [7], and BBGraP [12]. These approaches
offer various strategies for distributing the computational
workload across multiple devices, with a particular emphasis
on resource-constrained platforms where traditional infer-
ence methods prove impractical due to memory and compu-
tational limitations

2.1 Centralized vs. Decentralized Approaches

Distributed CNN inference across multiple devices requires
coordination to ensure a correct execution order and data
synchronization. These coordination mechanisms generally
fall into two categories. In centralized approaches, a desig-
nated master device orchestrates synchronization among all
participating devices in the network. The master device dy-
namically creates tasks and distributes them to idle devices,
ensuring a balanced workload distribution and maximizing
resource utilization. This paradigm offers simplified coordi-
nation but may introduce a bottleneck and a single point of
failure at the master device. Decentralized approaches, on
the other hand, distribute the responsibility for synchroniza-
tion and correctness to the individual devices. While this
eliminates the overhead associated with a master device, this
approach suffers from a significantly increased complexity.
The compiler must incorporate performance models to cal-
culate a partitioning scheme that balances execution equally
on all devices, considering device performance and network
bandwidth. Recent works that employ a decentralized ap-
proach include EdgeFlow [7] and BBGraP [12].

2.2 Search Space Exploration and Layer Fusion

The partitioning of CNN workloads across multiple devices
presents a computationally intensive optimization challenge
with an exponentially growing search space. Sophisticated
exploration strategies are necessary to find the best divisions
that balance the computational load while minimizing the

Adaptive Data Partitioning to Parallelize CNN Inference on Resource-Constrained Hardware

communication overhead, particularly as the number of de-
vices and the network complexity increases. In other words,
the efficiency of a partitioning heavily depends on the re-
finement of the search space exploration techniques. Earlier
works, such as MoDNN [11] and CoEdge [23], optimize each
layer individually and synchronize after each division on the
master device. More advanced techniques, such as those em-
ployed by DeepThings [25] and DeeperThings [20], minimize
data synchronization within layers while still synchroniz-
ing between layers. DeeperThings extends this concept by
exploring both input and output channel partitioning. This
is particularly beneficial for fully-connected layers towards
the end of the network where the weights are significantly
larger than the feature maps and spatial dimensions become
indivisible.

In distributed inference, layer fusion is critical to achieving
maximum performance because it minimizes inter-device
data movements. Existing approaches, however, exhibit sig-
nificant limitations. BBGraP [12] implements data partition-
ing layer-by-layer, dividing the output based solely on the
number of available devices, but fails to consider device-
specific parameters or capabilities. DeepSlicing [24] advances
the state-of-the-art by searching across multiple fused layers.
The search is limited to a fixed number of layers rather than
optimizing the partitioning strategy itself. EdgeFlow [7] ad-
dresses the data transfer overhead between devices through
a linear optimization problem that considers only the pre-
vious layer to reduce inter-layer data transfers. However,
this approach introduces restrictions on output patterns, as
it prohibits data overlaps essential for convolutional oper-
ations where stride and width parameters naturally create
input overlaps. Consequently, if the previous layer cannot
produce overlapped outputs, EdgeFlow cannot perform layer
fusion, resulting in increased data transfers between the de-
vices. ADaPS addresses these limitations by implementing a
comprehensive approach to layer fusion that considers the
entire CNN architecture while supporting flexible partition-
ing along multiple tensor dimensions. ADaPS dynamically
optimizes the partitioning strategies based on computational
capabilities and communication constraints, enabling the
generation of more efficient execution plans on heteroge-
neous hardware configurations.

3 CNN Computational Graph Partitioning

This section introduces the concepts and formal definitions
of our partitioning framework. We first categorize CNN op-
erators according to their partitioning characteristics and
then present the mathematical formulations to determine
the input requirements based on the partitioned outputs.

3.1 Operator Classification

When partitioning CNN workloads, different operators ex-
hibit distinct behaviors that affect how they can be divided

LCTES ’25, June 16-17, 2025, Seoul, Republic of Korea

Table 2. Classification of CNN Operators

Classification | Operators
Type 1 Conv, DWConv, Pool, AvgPool, MaxPool
Mul, Add, HardSwish, HardSigmoid,
Type 2
BatchNorm, Relu, GeMM
Concat, Reshape, ReduceMean, Flatten,
Type 3
Dropout, Fully-connected (FL)

efficiently. Building on formulations from EdgeFlow [7] and
BBGraP [12], our framework classifies operators into three
types based on their mathematical properties and partition-
ing constraints. This classification is shown in Table 2. Type 1
operators comprise operators with weights, padding, or stride
parameters, such as convolutional and pooling layers. These
operators require special handling during partitioning due
to their neighborhood dependencies, i.e., output elements
depend on multiple adjacent input elements. Type 2 opera-
tors include element-wise operators, such as multiplication
or addition, and activation functions that can be partitioned
without introducing additional dependencies except the di-
rect input-output mappings. Type 3 operators are operators
that transform tensor dimensions or aggregate information
across dimensions. Operators of this type are not partitioned
by our framework.

3.2 Partition Representation and Tensor Indexing

Our framework adopts the NCHW tensor representation
convention, where N represents the batch dimension, C de-
notes channels, and H and W specify the height and width
dimensions, respectively. The origin (index 0) is located at
the top-left corner of the tensor. Partitions are defined using
interval notation across these dimensions.

Each partition is represented as a collection of intervals
in one or more dimensions. For example, a height partition
denoted as H:[0,2)[2,4) indicates two intervals: the first span-
ning height indices 0 to 2, and the second covering indices
2 to 4. The left value in each interval specifies the starting
index (inclusive), while the right value indicates the ending
index (exclusive). When partitioning occurs in only one di-
mension, each interval can be directly mapped to a specific
device.

3.3 Partitioning Concepts

Figure 1 illustrates two core concepts in our partitioning
approach using representative examples from both Type 1
(top) and Type 2 (bottom) operators: dependencies and com-
putation overlaps. The Type 1 example shows a convolu-
tional operation with padding, while the Type 2 example
demonstrates an element-wise operation. Dependencies
(shown in blue in Figure 1) represent values (output activa-
tions of the preceding layer) that must be transferred from
one device to another, creating synchronization points in

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

the execution flow. These data dependencies directly impact
communication overhead and are a primary optimization tar-
get in our framework. Computation overlaps (highlighted
in yellow in Figure 1) occur when identical computations
are performed on multiple devices. These duplicated calcula-
tions represent a trade-off between computation redundancy
and communication cost. For operators in Type 1, overlap
can reduce communication requirements by eliminating de-
pendencies. On the other hand, for operators in Type 2, data
overlap typically only increase computational load without
yielding any communication benefits.

3.4 Partition Selection Strategy

The effectiveness of a partitioning strategy depends on bal-
ancing the computational load across all devices while mini-
mizing the communication overhead. For operators of Type 1,
ADaPS calculates the optimal overlap to reduce communi-
cation costs, especially for operators with large kernel sizes.
For Type 2 operators, we minimize overlaps since they pro-
vide no communication benefit. This classification-based
approach allows our framework to make intelligent parti-
tioning decisions that are tailored to the characteristics of
each operator, leading to more efficient distributed execution
across heterogeneous computing resources.

4 The ADaPS Framework

ADaPS introduces a novel search space exploration method-
ology that automatically identifies optimal partitioning strate-
gies across heterogeneous devices. The framework considers
both computational capabilities and communication con-
straints, enabling effective workload distribution while min-
imizing data transfer overhead.

During its search, ADaPS considers each device’s process-
ing speed, bandwidth constraints, and data transfer consid-
erations. Unlike related work, ADaPS recursively explores
optimal partitioning for layer fusion across the entire CNN,
not just adjacent layers.

4.1 Search Space Exploration

Previous works have shown limitations in adaptability. BB-
GraP [12] employs naive partitioning without considering
hardware specifications. EdgeFlow [7], on the other hand,
restricts its search to immediate layer pairs and prohibits
overlapped output partitions. ADaPS addresses these limita-
tions through a sophisticated search approach that considers
the heterogeneous hardware environment. The search space
exploration engine comprises four integrated components:

1. Path Analysis: This component handles networks
with multiple paths and shortcuts by decomposing
complex graphs into manageable sub-blocks. This trans-
forms a multi-path problem into a collection of single-
path segments while maintaining partitioning consis-
tency.

Jaume Mateu Cuadrat and Bernhard Egger

2. Partition Generation: Rather than exhaustively enu-
merating all possible combinations, this component
implements a procedural system that dynamically cre-
ates specific partitioning configurations on demand.
ADaPS stores only essential parameters and is able to
recreate any partition in linear time.

3. Performance Evaluation: For each candidate parti-
tion, a performance model computes the expected ex-
ecution time by considering the computational work-
load, communication volume, and memory require-
ments of the partition. This enables a quantitative
comparison between different partitioning strategies.

4. Layer Fusion Optimization: This component searches
for optimal divisions between consecutive layers while
dynamically updating previously determined parti-
tions. The algorithm can revise earlier decisions when
downstream layers reveal more efficient global config-
urations, determining when fusion benefits outweigh
the costs.

In the following, we describe each of these components
in detail.

4.2 Path Analysis

Modern neural networks frequently feature complex topolo-
gies with multiple execution paths, skip connections, and
merge points. This presents a significant challenge for parti-
tioning optimization, as naively traversing the graph could
lead to inconsistent partitioning decisions or inefficient search
patterns. ADaPS addresses these challenges by decompos-
ing the network graph into manageable sub-blocks before
calculating the partitions.

To ensure efficient exploration of the partitioning search
space, we establish the following constraints for sub-block
formation:

e Each sub-block must form a directed acyclic graph
(DAG) with exactly one entry point and one exit point

e A sub-block may contain layers that originally had
multiple inputs or outputs in the complete network

e When encountering a layer with multiple outgoing
connections, we terminate the current sub-block and
initiate new sub-blocks for each output path

e When encountering a layer with multiple incoming
connections, we remove previously traversed inputs
from consideration and terminate the current sub-

block

Figure 3 illustrates this decomposition process. Starting with
the complete network graph (Figure 3(a)), the algorithm
identifies layers with multiple inputs or outputs. When a
layer with multiple inputs is encountered (Figure 3(b)), the
algorithm terminates the current sub-block and removes
the traversed connection from further consideration. This

Adaptive Data Partitioning to Parallelize CNN Inference on Resource-Constrained Hardware

LCTES ’25, June 16-17, 2025, Seoul, Republic of Korea

i i i
Input ‘ 1 ’ Divided Input ‘ 1 ’ Partition Output ‘ 1 ’ Definition
1 1 1
1 L 1
1 Device 1 1 1
1 1 1
1 1 1
- . me |
: : I | Device: D1 D2
1
Type 1 ! ' ' |Bach: [01) [0,1)
1 [oowez ' I | Channel: [0,1) [0,0)
| | | Height: [0,2) [2,4)
Width: [0,4) [0,4)
1 1 1
Weight: 3x3 1 1 HE 1
Stride 1 ! ! !
1 1 1
1 ! 1
; Device 1 : :
1 1 1
1 1 | | Device: D1 D2
! ! I | Batch: [0,1) [0,1)
Type 2 ! T I | Channel: [0,1) [0,1)
N e ' | | Height [02) [14)
| | \ Width: [0,4) [0,4)
1 1 1
1 L 1
1 1 1
1 1 1

Figure 1. Illustration of partitioning effects across different operator types. Type 1 operators (top) benefit from computational
overlaps by reducing data dependencies (blue regions), while Type 2 operators (bottom) experience only redundant computation

(yellow regions) without communication benefits.

CNN Frameworks
g Explorer - Hardware
T4 5 = § oo |
.r C_(/U) [C = - C - S c "g =
2500 (53| | 555 | 35| mEEH o]
£ S8|® IEg |ES =]
a© a? g% I: Device D
Hardware o evice
Configuration ——

Figure 2. ADaPS architecture highlighting the search space exploration module (in red) within the optimization pipeline.

process continues until the entire network has been decom-
posed into a collection of single-entry, single-exit sub-blocks
(Figure 3(c)).

While our decomposition approach effectively reduces
the complexity of the partitioning search problem, it does
not incorporate cost-based optimization for the sub-block
boundaries themselves. This simplification may occasionally
result in sub-optimal decomposition patterns. However, the
substantial reduction in search space complexity outweighs
potential inefficiencies at sub-block boundaries. It is impor-
tant to note that this decomposition does not constrain layer
fusion opportunities within each sub-block. The subsequent
optimization phases may still identify and implement fusion
across any layers within a sub-block, regardless of their po-
sition or connectivity pattern. Furthermore, while layers at
sub-block boundaries are not candidates for cross-boundary
fusion, their individual partitioning strategies remain fully
optimizable.

4.3 Partition Creation

The search space of one layer’s partitioning grows expo-
nentially with the number of devices. If no constraints are
applied, there are O(MP) possible partitionings, where M
represents the output feature map dimension size and D is
the number of deployed devices. Layers are independent,
yielding a search space complexity of O(MID) VI € Layers.
Exhaustively evaluating all possible partitions is impossible;
therefore, we employ an adaptive thresholding approach to
constrain the search space while preserving the exploration
of the most promising partitioning configurations.

4.3.1 Bound Determination for Partition Sizes. To ef-
fectively prune the search space, we first establish minimum
and maximum partition sizes for each device. The minimum
partition size for device d is calculated using Equation 1,
where out_size represents the output feature map dimen-
sion to be partitioned, and speed; denotes the processing

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

(a) Initial net- (b) Multiple-input
work graph layer identifica-
tion

(c) Final sub-block
decomposition

Figure 3. Path analysis process for network decomposi-
tion. Dotted rectangles represent identified sub-blocks, and
crossed connections indicate removed paths during the de-
composition process.

capability of device d relative to all devices in the system.

speedy (1)

min_sizeq = |out_size 5D peed,

The processing speed metrics (speedy) are derived from
empirical performance measurements, following method-
ologies established in EdgeFlow [7] and DeepSlicing [24].
We develop a linear regression model based on benchmark-
ing data collected using PyTorch’s [15] profiling tools. This
model provides a reliable approximation of relative process-
ing speeds across heterogeneous devices.

The minimum size constraint ensures a computational
load distribution proportional to each device’s processing
capability in an ideal scenario that ignores communication
overhead. Partition sizes smaller than this minimum thresh-
old would likely create performance imbalances, resulting
in suboptimal execution as detailed in the optimization for-
mulation in Section 4.4.

The maximum size of a partition is identical for all devices
and ensures that no single device monopolizes the entire
workload.

max_sizeq = out_size — (D — 1) (2)

For example, in a scenario with output size 224 and four
devices, the first device cannot process the entire range from
0 to 224, as this would leave no meaningful work for the
remaining devices. Similarly, the last device cannot start its
partition at index 0 for the same reason.

4.3.2 Search Space Pruning with Adaptive Threshold-
ing. After the minimum and maximum bounds are estab-
lished, we implement adaptive thresholding according to
Equation (3):

search_sizey = (max_sizeq — min_sizeg) - thrs (3)

Jaume Mateu Cuadrat and Bernhard Egger

Where thrs represents a tunable threshold parameter be-
tween 0 and 1 that controls the aggressiveness of search
space pruning. This approach allows us to restrict the search
on the most promising region between the minimum size
(based on computational balance) and maximum size (con-
strained by work distribution requirements).

The threshold mechanism provides a configurable trade-
off between exploration thoroughness and computational
efficiency. Higher threshold values explore a larger portion
of the partition size range, potentially discovering more op-
timal configurations at the cost of increased search time.
Lower threshold values concentrate on partitions closer to
the computational balance point, accelerating the search
process while potentially missing some optimization oppor-
tunities. An evaluation of the threshold’s effect is provided
in the result section (Table 6).

Importantly, this thresholding approach preserves the po-
tential for layer fusion by maintaining a reasonable range
of partition sizes rather than forcing a single fixed partition-
ing strategy. Exploring diverse partitioning configurations
remains essential for identifying fusion opportunities across
multiple layers.

4.4 Optimization Problem

This subsection describes our methodology for identifying
optimal partitioning strategies through a formalized opti-
mization problem. The approach incorporates three key fac-
tors: computational workload distribution, inter-device data
transfer, and management of overlapped computational re-
gions. The following notations are used during this subsec-
tion:

e Indices s and e denote the start and end of partition

intervals (e.g., for interval [3,7),s =3 and e = 7)
® pras/e: | layer index, d device, s start/e end of partition.

4.4.1 Computational Workload Estimation. The com-
putational workload distribution across heterogeneous de-
vices is calculated by Equation (4) by computing a vector
of estimated execution times t for each device d, based on
the assigned output size and device-specific processing ca-
pabilities. We utilize the same speed; values as introduced
in Section 4.3.

ty = |out_size/speedy| Vd € [1,D] (4)

Equation (5) identifies the computational bottleneck by
determining tomp, the maximum execution time among all
devices. This represents the slowest device that others must
wait for to maintain synchronization.

teomp = max(t) ©)
Example 4.1. Consider two partitioning strategies: p;; =
[0,3)[3,6)[6,9) and p;» = [0,2)[2,3)[3,9), where all de-
vices have equal processing capabilities. In p; 5, two devices
(device; and device;) complete significantly earlier but re-
main idle while waiting for device,. Conversely, in p; 1, the

Adaptive Data Partitioning to Parallelize CNN Inference on Resource-Constrained Hardware

slowest device finishes earlier than in p; ;. Our model penal-
izes py 2 to avoid excessive idle time across devices.

4.4.2 Data Transfer Overhead. After determining the
computational costs, we calculate the data transfer overhead
between adjacent layers.

Equations (6) and (7) calculate the data transfer require-
ments at the start and the end of each partition interval,
applying constraints to prevent illogical negative transfer
values.

0 if >

dataj g = . Pi+1,ds > Plds ©6)
min(pras, Prevde) = Pl+1ds O/W
0 if <

dataj g, = Pi+1,de < Plde)
Plitde — MaX(Prirds, Prde) O/W

Example 4.2. For this example, we consider two layers divi-
sion partitions at d = 1: where p;; = [3,6) and py411 = [2,3),
the application of Equations (6) and (7) yields data; s = 1
and dataj;, = 0.

The total data transfer time (¢444) is calculated by sum-
ming individual transfer requirements and dividing by the
bandwidth capacity (BW,,) for each device:

D
tdata = Z(datal,d,s +datayg.)/BWy (®)

d=1
4.4.3 Overlapped Computation Overhead. As explained
in Section 3, certain operators require duplicate computa-
tion across multiple devices when partitioned. Equation (10)
calculates this overlapped computation overhead (t,,), ac-
counting for processing speed differentials across devices.

Plde — Pld+1s d=1
Tov = \Plds — Pld-1le d=D 9)
Plds — Pld-1e + Plde — Pra+is 1<d<D
D ¥
too = > 10
o dz_; speedy (10)

Note in Equation (9), that for the first and the device (d =
1 and d = D, respectively), only one of the sides of the
partitions are considered, as these devices are not positioned
between two other devices.

4.4.4 Total Execution Time. The total execution time
(score) for a candidate partitioning strategy is given by the
sum of the components:

score = teomp + tdata + too (11)

It is important to note that our current model does not
consider potential overlap between computation and data
transfer operations. This simplification allows us to directly
sum the three time components to obtain the total execu-
tion time for each layer. While more sophisticated pipelining

LCTES ’25, June 16-17, 2025, Seoul, Republic of Korea

Layer0
palEnd | (9] (9 [9] [9] (o] o] (o] o

Start [[5 | [5][6][5][6][5][6][7]
L1 |2 End 6] (6]
Start
3
1L O |

End
D1
Start E
I
Layer2 || L2 |

Figure 4. Search space exploration example. Tree nodes pre-
fixed with 'L’ represent layer structures, 'D’ indicates device
index, and Start/End denote partition interval boundaries.

techniques could theoretically improve performance further
and are left for future work, this additive model provides a
robust approximation for comparing candidate partitioning
strategies, with lower scores indicating superior configura-
tions.

The calculated score serves as the primary metric during
partition selection in Section 4.5, guiding the identification
of optimal partitioning strategies for each layer in the CNN
architecture.

4.5 Search Space Exploration

This section describes our approach to efficiently exploring
the vast partitioning search space while identifying near-
optimal solutions. We present a tree-based search algorithm
enhanced with pruning techniques and dynamic program-
ming to significantly reduce computational complexity.

4.5.1 Tree-Based Representation. We employ a hierar-
chical tree structure to represent the partitioning search
space, enabling the application of Alpha-Beta pruning tech-
niques. Figure 4 illustrates this representation, where each
layer node encodes a specific division of the layer’s tensor
along the selected dimension. Each layer node contains three
essential components:

e Layer: Represents the CNN layer being partitioned,
with boundaries from 0 to the layer’s dimension size
in the selected direction.

e Device: Indicates the specific device assignments for
a partition segment. For example, in Figure 4, device 1
the left-most assigned partition [2, 5).

o Partition Interval: Defines the start and end indices
of each partition segment within the tensor dimension.

The organization of tree nodes within the tree significantly
impacts search efficiency. To leverage the convex nature of
our optimization function, we order tree nodes to represent
monotonically increasing partition sizes when traversing
from left to right. For example, in Figure 4, partitions progress
from [0, 3) to [0, 4), incrementing the partition size. We apply
a similar ordering to starting points within each device. This
structured ordering enables more effective pruning during
the search.

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

4.5.2 Evaluation Methodology. Our algorithm employs
a depth-first search to reach terminal nodes, followed by
backpropagation to evaluate partitioning decisions. The eval-
uation of layer partitioning configurations is governed by
Equation (12), which addresses both current layer optimiza-
tion and interactions with adjacent layers.

Opt(divo,out, divl,in) l =0
r1 = opt(divour, 0) + 11—y I=L-1 (12)
Opt(dl-f)[,out, dil}l+1,in) +r—q 0< l <L-1

Equation (12) comprises two key components. The first
component, opt, evaluates the relationship between the input
division, divj11 i, (derived from the previous layer’s output)
and the current layer’s output division, div; 4. In Figure 4,
this corresponds to analyzing partitions from Layers 1 and 2
using the optimization formulation from Section 4.4. If no
previous layer exists (I = L — 1), the data transfer component
from Equation (8) is omitted.

The second component r considers the impact of the cur-
rent partitioning decision on subsequent layers. For example,
when evaluating Layer 1, we incorporate results from Layer
0. This recursive formulation enables the discovery of layer
fusion opportunities across multiple layers, not just adjacent
pairs.

The evaluation results for each unique partitioning con-
figuration are stored to prevent redundant computation, sig-
nificantly reducing the overall search time.

4.5.3 Dynamic Programming Optimizations. To accel-
erate search space exploration, we implement two dynamic
programming techniques:

Memoization of Evaluation Results: As noted in Sec-
tion 4.5.2, identical partitioning configurations may be en-
countered multiple times during the search. We cache evalu-
ation results for each unique configuration, retrieving them
when the same configuration is encountered again rather
than recalculating.

Sub-Tree Reuse: This technique identifies and reuses
pruned branches across different parts of the search tree
when all preceding node values match. Figure 5 illustrates
this concept, where branches sharing the same previous
starting node values can reuse identical sub-trees. This ap-
proach preserves the convexity properties established by our
node ordering, ensuring consistent evaluation patterns while
eliminating redundant exploration.

4.5.4 Alpha-Beta Pruning Implementation. The effi-
ciency of our search algorithm is substantially enhanced
through a modified Alpha-Beta pruning approach. By lever-
aging the sorted nature of our search tree (Section 4.5.1), we
can eliminate entire branches that cannot improve upon the
best solution found so far.

Jaume Mateu Cuadrat and Bernhard Egger

As illustrated in Figure 6, after evaluating several par-
titioning possibilities, our algorithm identifies and prunes
branches that cannot yield better results, significantly re-
ducing search time. The pruning propagates up through
previous branches to the layer’s root node, maximizing the
elimination of unnecessary computation.

It is important to note that when evaluating multiple layers
with Equation (12), this pruning approach might occasion-
ally exclude potentially superior solutions in specific edge
cases. However, this represents a necessary trade-off to make
the vast search space computationally feasible. In practice,
our experimental results demonstrate that the algorithm con-
sistently finds high-quality solutions despite this theoretical
limitation.

5 Experimental Evaluation
5.1 Experimental Setup

To rigorously evaluate ADaPS, we conducted experiments on
resource-constrained edge devices using the hardware con-
figurations detailed in Table 3. Our implementation leverages
PyTorch [15] and its Gloo backend for distributed commu-
nication primitives. For comparing inference latency across
frameworks, we used PyTorch’s built-in profiling tools to
ensure accurate timing measurements.

We selected a diverse set of CNN architectures to thor-
oughly evaluate our framework: AlexNet [9], VGG16 [19],
MobileNetV2 [18], InceptionV3 [21], and HardcoreNAS [14].
These networks were chosen to represent a spectrum of com-
plexity, from relatively simple architectures to those with
challenging multi-path structures. All network models were
obtained from ONNX Zoo [1].

To explore different network bandwidths, we test each
configuration at 10 Mbps and 100 Mbps. This allowed us to
evaluate the frameworks’ sensitivity to communication con-
straints. We compared ADaPS against two state-of-the-art
decentralized frameworks: BBGraP [12] and EdgeFlow [7].
All reported results are normalized to EdgeFlow’s perfor-
mance for consistent comparison. The partitioning strategies
were computed once per network and hardware configura-
tion. The threshold was set such that the total runtime of
ADaPS’ search algorithm stayed below five minutes (15% for
all networks except VGG with a threshold of 5 percent) on
single core of a AMD Ryzen 7 7700X processor running at
5.4 GHz. All reported performance results represent averages
across 100 independent runs on real hardware.

5.2 Performance in Heterogeneous Environments

The most significant advantage of ADaPS is its ability to
efficiently distribute workloads across heterogeneous de-
vices. Figure 7 shows the performance comparison for a
two-node heterogeneous configuration (one Raspberry Pi 5B
and one Raspberry Pi 4B). ADaPS outperforms both BBGraP

Adaptive Data Partitioning to Parallelize CNN Inference on Resource-Constrained Hardware

LCTES ’25, June 16—17, 2025, Seoul, Republic of Korea

End 5]
L1|D2 Start ||
D1 End

3 .
Start [5 1 [5] 6 ;[5][6]

Start

[Sub-tree [0,%)*

Figure 5. Visual representation of sub-tree reuse in dynamic programming optimization. Identical sub-trees (highlighted) are
computed once and reused across branches with matching preceding conditions.

b3l En
Start (4]
L1/D2 End
Start
D1 End
Start

[Calculated |

Best Skipped

Figure 6. Visual representation of Alpha-Beta branch pruning. Values inside nodes represent optimization function results,
with shaded nodes indicating pruned search paths that cannot improve upon the current best solution.

Table 3. Hardware Configurations for Experimental Evaluation

Platform Devices

Processor

Cores/Device Memory

Raspberry Pi 4B 2
Raspberry Pi 5B 4

Cortex-A72 (1.5GHz) 8 8 GiB
Cortex-A76 (2.4GHz) 8 8 GiB

T
[BBGraP [ADAPS

1

10 Mbs 100 Mbs 10 Mbs 100 Mbs 10 Mbs 100 Mbs 10 Mbs 100 Mbs 10 Mbs 100 MbsGeo. Mean
AlexNet GG16 MobileNetv2

Inceptionv3 HardcoreNas

Figure 7. Two-node heterogeneous configuration performance comparison (RP 5B X 1, RP 4B X 1). Results normalized to

EdgeFlow (lower is better).

and EdgeFlow across most network architectures and band-
width configurations, with an average improvement of ap-
proximately 30% for networks without complex multi-path
structures. This performance advantage stems from ADaPS’s
ability to adapt to device capabilities and optimize partition-
ing decisions accordingly. For simpler network architectures
like AlexNet and VGG16, ADaPS achieves particularly im-
pressive gains, with performance improvements of up to 54%
compared to EdgeFlow at higher bandwidth settings. The
improvements are more pronounced at 100 Mbps than at 10
Mbps for most networks, indicating that ADaPS effectively
leverages available bandwidth to optimize data transfer pat-
terns.

For more complex architectures with multiple execution
paths (InceptionV3 and HardcoreNAS), the performance im-
provements are more modest but still significant. In these

cases, the challenge of coordinating multiple execution paths
while maintaining efficient data transfer becomes more pro-
nounced, particularly at lower bandwidth settings. Never-
theless, ADaPS still matches or exceeds the performance of
BBGraP for these networks and significantly outperforms
EdgeFlow.

5.3 Data Transfer Efficiency

A critical factor in ADaPS’s performance advantage is its abil-
ity to minimize inter-device data transfer through intelligent
partitioning decisions. Table 4 presents the data reduction
comparison between ADaPS (AD), BBGraP (BB), and Edge-
Flow for the two-node heterogeneous configuration (one
Raspberry Pi 5B, one Raspberry Pi 4B device). Lower values
indicate less communication overhead relative to EdgeFlow.

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

Table 4. Comparison of transferred data volume for a two-
node heterogeneous setup (1x RP 5B, 1x RB 4B),normalized
to EdgeFlow. BB denotes BBGraP, AP represents ADaPS.

Jaume Mateu Cuadrat and Bernhard Egger

Table 5. Comparison of transferred data volume for a four-
node heterogeneous setup (2x RP 5B, 2x RB 4B) of BB-
GraP (BB) and ADaPS (AP) relative to EdgeFlow.

Bandwidth | Data Reduction Factor Bandwidth | Data Reduction Factor

Network Network
(Mbps) BB \ AD (Mbps) BB \ AD
10 1.45 0.73 10 1.05 0.88
AlexNet 100 1.45 0.96 AlexNet 100 0.86 0.72
10 1.08 0.46 10 0.98 0.81
VGG16 100 1.08 0.61 VGG16 100 0.98 0.81
. 10 0.50 0.52 . 10 0.92 0.93
MobileNetV2 100 051 053 MobileNetV2 100 071 072
. 10 2.18 0.97 . 10 1.22 1.09
InceptionVs 100 2.17 0.98 InceptionVs 100 1.29 1.10
10 1.71 0.94 10 1.08 1.02
HardcoreNAS 100 T71 0.95 HardcoreNAS 100 Tod 0.98

ADaPS achieves the lowest communication overhead for
most networks, with particularly impressive reductions for
VGG16 (54-39% reduction compared to EdgeFlow). The strong
correlation between data reduction and inference speedup
confirms that ADaPS’s superior partitioning decisions ef-
fectively minimize the communication bottleneck. For Mo-
bileNetV2, BBGraP achieves slightly better data reduction,
but the difference is marginal (0.50 vs. 0.52), explaining the
comparable performance between the two frameworks for
this specific network.

5.4 Scaling to Four-Node Configurations

To evaluate ADaPS’s scalability, we extended our experi-
ments to a four-node heterogeneous configuration compris-
ing two Raspberry Pi 5B and two Raspberry Pi 4B devices.
As shown in Figure 8, ADaPS maintains its performance ad-
vantage at this larger scale, though with somewhat reduced
margins compared to the two-node configuration.

With four nodes, ADaPS achieves an average improve-
ment of approximately 15% compared to EdgeFlow and BB-
GraP. Interestingly, the performance pattern with respect to
bandwidth changes: in the four-node configuration, lower
network speeds (10 Mbps) often yield better relative perfor-
mance than higher speeds (100 Mbps). This result stems from
how increased bandwidth affects the optimization landscape.
At higher bandwidths, the algorithm creates more synchro-
nization points, which can lead to inefficiencies when scaled
to more devices.

Table 5 shows the data reduction comparison for the four-
node configuration. ADaPS again achieves the lowest com-
munication overhead for most networks, though the mar-
gins are smaller compared to the two-node case. VGG16
and AlexNet show the most significant data reduction (19%
and 28% respectively at their best settings), which directly
correlates with their superior inference performance. This

confirms that ADaPS’s optimization strategy remains effec-
tive even at larger scales.

5.5 Impact of Network Architecture

Our results reveal important insights about how network
architecture affects partitioning performance:

e Linear architectures (AlexNet, VGG16) benefit most

significantly from ADaPS’s optimization approach,

with consistent performance improvements across all
configurations.

Efficient architectures (MobileNetV2) show more

modest gains, likely because they already minimize

computational and memory requirements, leaving less
room for optimization through partitioning.

e Complex multi-path architectures (InceptionV3,
HardcoreNAS) present greater challenges for all parti-
tioning frameworks, particularly at lower bandwidths.
Nevertheless, ADaPS still outperforms competing ap-
proaches for these networks in most configurations.

5.6 Pruning results

The search space for assigning partitions of a neural net-
work layer to D heterogeneous devices is combinatorially
large and cannot be exhaustively explored; heuristics are
therefore essential. The presented ADaPS technique first es-
timates a partitioning based on device performance, followed
by aggressive pruning. The initial partitioning provides a
strong initial guess. A threshold parameter thr defines the
search range around this estimate: given an initial guess p,
the search spans [p —thr - p, p + thr - p]. While the threshold
parameter allows for tuning the trade-off between search
quality and runtime, the resulting space remains exponen-
tially large.

Pruning further reduces this space to a manageable size.
Table 6 quantifies the impact of pruning on the search space
for a single convolutional layer of size 224 and a varying

Adaptive Data Partitioning to Parallelize CNN Inference on Resource-Constrained Hardware

LCTES ’25, June 16-17, 2025, Seoul, Republic of Korea

[BBGraP

L

T
[ADAPS

10 Mbs 100 Mbs 10 Mbs 100 Mbs
AlexNet GG16

Vi

MobileNetv2

Inceptionv3

10 Mbs 100 Mbs 10 Mbs 100 Mbs 10 Mbs 100 Mbs Geo. Mean
HardcoreNas

Figure 8. Performance comparison with four-node heterogeneous configurations (2x Raspberry Pi 5B, 2x Raspberry Pi 4b).
Results normalized to EdgeFlow (lower is better).

Table 6. Effect of pruning threshold on search space exploration for a single convolutional layer of size 224.

Devices Threshold
5% | 10% [15% [20%
Search space (log10) 2.5 3.1 3.4 3.6
2 Visited 26 48 70 92
Pruning factor (log10) 1.1 1.4 1.5 1.7
Search space (log10) 5.7 7.4 8.2 9
4 Visited 389 1355 2600 4622
Pruning factor (log10) 3.1 4.2 4.8 5.3
Search space(log10) 9.8 13.3 15.5 17.2
8 Visited 966 3417 7344 12747
Pruning factor (log10) 6.8 9.8 11.7 13.1
Search space (log10) 17.1 21.1 26.6 28.7
16 Visited 2501 5174 16528 43121
Pruning factor (log10) 13.7 17.4 224 24.1

numbers of devices. Pruning becomes increasingly effective
with a larger threshold and more devices, as it eliminates
infeasible candidates early in the search tree. As shown in
Section 4.5.4, ADaPS halts exploration of subtrees that can-
not yield better solutions, exploiting the tendency of high-
quality solutions to occur early. The pruning benefit multi-
plies across layers, scaling exponentially with the network
depth.

Although ADaPS does not guarantee globally optimal
solutions, it consistently identifies high-quality configura-
tions within exponential search spaces in reasonable time.
The experimental results in this section confirm that ADaPS
outperforms the state-of-the-art baselines across diverse ar-
chitectures and hardware setups.

6 Conclusion

We present ADaPS, a framework for efficient CNN inference
on resource-constrained heterogeneous hardware. Our ap-
proach combines game-theoretic techniques (Minmax and
Alpha-beta pruning) with dynamic programming optimiza-
tions to comprehensively explore partitioning strategies across
the entire network architecture. Unlike previous methods
that optimize layers individually or in adjacent pairs, ADaPS

performs a holistic analysis that enables discovery of ef-
fective layer fusion opportunities while minimizing both
computational imbalance and communication overhead. The
experimental evaluation demonstrates that ADaPS consis-
tently outperforms state-of-the-art approaches, improving
inference latency by up to 30% for some architectures and
maintaining an average improvement of 1.2X across all tested
networks. These gains are accompanied by significant reduc-
tions in inter-device data transfer of up to 54% compared to
existing methods. ADaPS’s ability to automatically tailor par-
titioning decisions to specific hardware capabilities proves
particularly valuable as network complexity increases.

Acknowledgments

We thank the anonymous reviewers for their helpful feed-
back. This work was funded, in parts, by the Neural Pro-
cessing Research Center (NPRC) of the Samsung Advanced
Institute of Technology (SAIT), and by the Korean National
Research Foundation through grants 21A20151113068 (BK21
Plus for Pioneers in Innovative Computing - Dept. of Com-
puter Science & Engineering, SNU), 10077609 (MOTIE/KEIT),
and RS-2023-00302083 (MSIT). ICT at Seoul National Uni-
versity provided research facilities for this study. Bernhard
Egger is the corresponding author for this work.

—

—

—

LCTES °25, June 16-17, 2025, Seoul, Republic of Korea

References
[1] Junjie Bai, Fang Lu, Ke Zhang, et al. 2019. ONNX: Open Neural Network

Exchange. https://github.com/onnx/onnx.

Ahmed A Elngar, Mohamed Arafa, Amar Fathy, Basma Moustafa,
Omar Mahmoud, Mohamed Shaban, and Nehal Fawzy. 2021. Image
classification based on CNN: a survey. Journal of Cybersecurity and
Information Management 6, 1 (2021), 18-50.

Eyad Elyan, Pattaramon Vuttipittayamongkol, Pamela Johnston, Kyle
Martin, Kyle McPherson, Chrisina Jayne, Mostafa Kamal Sarker, et al.
2022. Computer vision and machine learning for medical image analy-
sis: recent advances, challenges, and way forward. Artificial Intelligence
Surgery 2 (2022).

Myeonggyun Han, Jihoon Hyun, Seongbeom Park, Jinsu Park, and
Woongki Baek. 2019. MOSAIC: Heterogeneity-, Communication-,
and Constraint-Aware Model Slicing and Execution for Accurate and
Efficient Inference. In 2019 28th International Conference on Parallel
Architectures and Compilation Techniques (PACT). 165-177. doi:10.
1109/PACT.2019.00021

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770-778.
Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017).

Chenghao Hu and Baochun Li. 2022. Distributed inference with deep
learning models across heterogeneous edge devices. In IEEE INFOCOM
2022-IEEE Conference on Computer Communications. IEEE, 330-339.
Donald E. Knuth and Ronald W. Moore. 1975. An analysis of alpha-beta
pruning. Artificial Intelligence 6, 4 (1975), 293-326. doi:10.1016/0004-
3702(75)90019-3

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Ima-
geNet Classification with Deep Convolutional Neural Networks. In Ad-
vances in Neural Information Processing Systems, F. Pereira, C.J. Burges,
L. Bottou, and K.Q. Weinberger (Eds.), Vol. 25. Curran Associates, Inc.
Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. 2016. Deepx: A
software accelerator for low-power deep learning inference on mobile
devices. In 2016 15th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN). IEEE, 1-12.

[11] Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher Krieger, and

Yiran Chen. 2017. Modnn: Local distributed mobile computing sys-
tem for deep neural network. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. IEEE, 1396—-1401.

[12] Jaume Mateu Cuadrat, Daon Park, and Bernhard Egger. 2022. A Black-

Box Graph Partitioner for Generalized Deep Neural Network Paral-
lelization. In International Conference on the Economics of Grids, Clouds,
Systems, and Services. Springer, 132-140.

Svetlana Minakova, Erqian Tang, and Todor Stefanov. 2020. Combining
task-and data-level parallelism for high-throughput CNN inference
on embedded CPUs-GPUs MPSoCs. In Embedded Computer Systems:
Architectures, Modeling, and Simulation: 20th International Conference,
SAMOS 2020, Samos, Greece, July 5-9, 2020, Proceedings 20. Springer,
18-35.

Jaume Mateu Cuadrat and Bernhard Egger

[14] Niv Nayman, Yonathan Aflalo, Asaf Noy, and Lihi Zelnik-Manor. 2021.
HardCoRe-NAS: Hard Constrained diffeRentiable Neural Architecture
Search. arXiv:2102.11646 [cs.LG]

[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems 32. Curran Asso-
ciates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[16] Mehdi Rafiei, Jenni Raitoharju, and Alexandros losifidis. 2023. Com-
puter vision on x-ray data in industrial production and security appli-
cations: A comprehensive survey. leee Access 11 (2023), 2445-2477.

[17] Ronald L Rivest. 1987. Game tree searching by min/max approximation.
Artificial Intelligence 34, 1 (1987), 77-96.

[18] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2019. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. arXiv:1801.04381 [cs.CV]

[19] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[20] Rafael Stahl, Alexander Hoffman, Daniel Mueller-Gritschneder, An-
dreas Gerstlauer, and Ulf Schlichtmann. 2021. DeeperThings: Fully
distributed CNN inference on resource-constrained edge devices. In-
ternational Journal of Parallel Programming 49 (2021), 600-624.

[21] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander
Alemi. 2017. Inception-v4, inception-resnet and the impact of residual
connections on learning. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 31.

[22] K Vanishree, Anu George, Srivatsav Gunisetty, Srinivasan Subrama-
nian, Shravan Kashyap, and Madhura Purnaprajna. 2020. CoIn: Accel-
erated CNN Co-Inference through data partitioning on heterogeneous
devices. In 2020 6th International Conference on Advanced Computing
and Communication Systems (ICACCS). IEEE, 90-95.

[23] Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Junshan Zhang.
2020. Coedge: Cooperative dnn inference with adaptive workload
partitioning over heterogeneous edge devices. IEEE/ACM Transactions
on Networking 29, 2 (2020), 595-608.

[24] Shuai Zhang, Sheng Zhang, Zhuzhong Qian, Jie Wu, Yibo Jin, and
Sanglu Lu. 2021. Deepslicing: collaborative and adaptive cnn inference
with low latency. IEEE Transactions on Parallel and Distributed Systems
32,9 (2021), 2175-2187.

[25] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.
2018. Deepthings: Distributed adaptive deep learning inference on
resource-constrained iot edge clusters. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2348—
2359.

[26] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018.
Learning transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vision and pattern
recognition. 8697-8710.

Received 2025-03-21; accepted 2025-04-21

https://github.com/onnx/onnx
https://doi.org/10.1109/PACT.2019.00021
https://doi.org/10.1109/PACT.2019.00021
https://doi.org/10.1016/0004-3702(75)90019-3
https://doi.org/10.1016/0004-3702(75)90019-3
https://arxiv.org/abs/2102.11646
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1801.04381

	Abstract
	1 Introduction
	2 Related Work
	2.1 Centralized vs. Decentralized Approaches
	2.2 Search Space Exploration and Layer Fusion

	3 CNN Computational Graph Partitioning
	3.1 Operator Classification
	3.2 Partition Representation and Tensor Indexing
	3.3 Partitioning Concepts
	3.4 Partition Selection Strategy

	4 The ADaPS Framework
	4.1 Search Space Exploration
	4.2 Path Analysis
	4.3 Partition Creation
	4.4 Optimization Problem
	4.5 Search Space Exploration

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Performance in Heterogeneous Environments
	5.3 Data Transfer Efficiency
	5.4 Scaling to Four-Node Configurations
	5.5 Impact of Network Architecture
	5.6 Pruning results

	6 Conclusion
	Acknowledgments
	References

