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a b s t r a c t

Data centers employ live virtual machine (VM) migration to optimize resource usage while ensuring continuous

execution of guest operating systems. Given the current resource utilization, sophisticated algorithms determine

when and where to migrate which VMs. Surprisingly little attention, however, is given to selecting the appro-

priate migration technique based on specific host and guest workload characteristics. This work first shows that

relying on a single live migration algorithm leads to significantly more Service-Level Objective (SLO) violations

and higher resource usage than adaptively selecting the most suitable migration algorithm. Building on this

observation, we then present an intelligent live migration framework that selects the most appropriate live mi-

gration algorithm based on SLOs and operational cost factors, using a multi-objective optimization approach.

Through a comprehensive evaluation across diverse hotspot and consolidation scenarios, we demonstrate that

the presented framework is able to substantially reduce SLO violation while optimizing key operational metrics.

The framework reduces the total migration time by a factor of 1.5 and decreases SLO violations by nearly an or-

der of magnitude compared to the predominantly used pre-copy method. Moreover, it achieves near-optimal VM

migration technique selection compared to an Oracle under varying workload conditions. The results indicate

that intelligent selection of live migration algorithms can significantly enhance both application performance

and resource efficiency in virtualized environments.

1. Introduction

Virtualization has become integral to cloud computing, enabling

data centers to efficiently manage resources while ensuring tenant iso-

lation. Major cloud service providers, including Amazon Web Services

[1], Microsoft Azure [2], Google Cloud [3], IBM Cloud [4], or Alibaba

Cloud [5], rely on virtual machines (VMs) to deliver scalable and flexi-

ble Infrastructure as a Service (IaaS) offerings.

Live migration refers to the process of transparently transferring ac-

tive VMs between physical hosts without interrupting the execution of

the VM. Live migration plays a crucial role in data center operations

for routine maintenance, load balancing, and resource consolidation to

reduce the Total Cost of Ownership and energy consumption of a data

center [6–9]. For instance, Google reports migrating over a million VMs

monthly for hardware maintenance and software updates [10,11].

Despite its advantages, live migration is predominantly used for

maintenance in commercial data centers [12]. A broader adoption for

load balancing and energy optimization remains limited due to several

challenges. Firstly, VM performance can be temporarily impacted during
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migration, potentially violating Service-Level Agreements (SLAs) such

as throughput and availability guarantees [13]. Secondly, migrations

generate additional network traffic and CPU load in the data center,

incurring short-term financial costs for operators despite long-term en-

ergy savings and resource utilization benefits [14,15]. Consequently,

the initial VM placement becomes critical [16–20], yet static placement

strategies often fail to adapt to fluctuating workloads, resulting in un-

derutilized resources. Studies have shown that CPU utilization in data

centers can range between 10 and 50 percent over extended periods

[21].

Existing VM management systems typically employ default migra-

tion techniques such as pre-copy [22] or post-copy [23], without consid-

ering the specific workload characteristics or system conditions. Recent

research suggest that dynamically selecting migration techniques based

on workload characteristics can significantly enhance live migration ef-

ficiency [24–31]. Several guidelines have been proposed to select the

best-suited live migration technique considering the VM workload and

resource utilization of the host [10,32–37]. However, current solutions

often lack comprehensive automation, failing to integrate workload
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detection, SLO impact prediction, andmigration execution into a unified

framework.

To address these limitations, we present an innovative VM man-

agement framework that intelligently selects the most suitable live mi-

gration algorithm by analyzing the VM workload demands, SLO con-

straints, and overall data center conditions. Our approach employs

machine learning models trained on extensive migration data to predict

the optimal migration strategy that maximizes the economic benefits for

both data centers and customers through improved VM efficiency and

fewer SLO violations. Our approach is based on and extends state-of-

the-art live migration models [35,38], which predict various migration

performance metrics for all supported live migration techniques in the

QEMU/KVM hypervisor, and further introduces a novel weighted com-

bined score metric to facilitate multi-objective optimization.

In this work, we demonstrate and evaluate our method using the

QEMU/KVM hypervisor. QEMU/KVM was selected due to its open-

source nature, wide adoption in both academia and industry, and its

flexible support for a variety of live migration techniques. However, we

emphasize that the proposed framework is not limited to QEMU/KVM

and can be implemented on other hypervisors such as VMware vSphere,

OpenStack or Xen, as it relies on standard migration metrics and in-

terfaces that are available in most modern virtualization platforms.

Compared to our prior work [35], we introduce four significant advance-

ments: (1) expanded support for migration techniques including the hy-

brid PRE-POSTmethod; (2) enhanced framework capabilities addressing

both hotspot resolution and consolidation scenarios; (3) improved pre-

diction models trained on an expanded dataset of 55,000+ migrations;

and (4) comprehensive evaluation across all migration techniques under

diverse operational conditions.

To demonstrate the efficacy of our framework, we implement a

cluster-wide VM scheduler that responds to load-balancing and con-

solidation triggers. Unlike static approaches relying on a single, fixed

migration technique, our scheduler dynamically selects the most suit-

able method based on real-time workload and system characteristics.

An evaluation across diverse workloads and SLO constraints shows that

our approach significantly reduces SLO violations and improves overall

resource utilization.

In summary, the contributions of this work are as follows:

• The development of a live migration performance model capable of

predicting optimal migration techniques based on multiple objec-

tives.
• The implementation of a management framework that utilizes the

performance model to automate VM migrations for load balancing

and server consolidation.
• A comprehensive evaluation that demonstrates significant reduc-

tions in SLO violations and resource usage, achieving near-optimal

performance compared to traditional single-technique approaches.

The remainder of this paper is organized as follows. Section 2 pro-

vides background on live migration and summarizes relevant related

work. Section 3 outlines the motivation behind our approach. Section 5

describes the design and implementation of the presented VM live mi-

gration orchestration framework. Section 6 presents and discusses the

experimental evaluation. Finally, Section 7 concludes this paper.

2. Background and related work

2.1. Live migration

Live migration refers to the process of transferring a virtual machine

(VM) from one physical host to another while keeping the guest OS

operational. Live migration requires moving the VM’s volatile memory

data, vCPU execution context, and other necessary runtime states with-

out halting its operation. As modern VMs often have memory footprints

of several tens of gigabytes, the memory transfer constitutes the primary

overhead during live migration [39].

The process of live migrating a VM from a source node to destination

node can be separated into three distinct phases (Fig. 1): prepare, stop-

and-copy, and resume. Depending on the selected migration technique,

the actions and the length of the phases vary considerably.

In the prepare phase, a new VM is created on the destination host.

Many techniques transfer the VM’s memory partially or entirely to the

destination node while the VM is still executing on the source node. Dur-

ing the stop-and-copy phase, the VM is stopped on the source node, the

necessary execution context – such as CPU registers and device contexts

– is transferred to the destination node, and then the VM is restarted

on the destination node. In the resume phase, the remaining parts of the

VM’s volatile execution state – such as main memory that is still residing

on the source node – are transferred to the destination node. The resume

phase ends with the destruction of the VM on the source node.

2.2. Live migration techniques

This section outlines the key live migration techniques implemented

in widely used hypervisors such as QEMU/-KVM [40] and Xen [41],

2.2.1. Basic transfer algorithms

Live migration techniques are commonly classified by the timing and

strategy of the memory transfer. The most fundamental approach is pre-

copy (PRE), where all VM memory is transferred to the destination be-

fore finalizing the migration [22]. During this process, dirty memory

pages are copied iteratively while the VM continues executing on the

source. The VM is paused once the dirtying rate drops below a thresh-

old – typically when the network bandwidth exceeds the page update

rate – or after a fixed number of iterations. The remaining dirty pages

and the processor and device states are transferred, then the VM is re-

sumed on the destination host. Since the entire VM state is already in

place, the resume phase is short.

In contrast, post-copy (POST) migration begins by transferring only

the minimal execution context and immediately resumes the VM on

Fig. 1. Live migration phases.
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Table 1

Overview of strengths and weaknesses of the live migration techniques across six performance metrics. A ✓ indicates strong performance for a given

metric, while a ✗ indicates performance metrics where the technique typically struggles.

Total migration

Time (TT)

Downtime

(DT)

Transferred data

volume (TD)

Performance

degra- dation (PERF)

Additional CPU

usage (CPU)

Additional memory

usage (MEM)

Pre-Copy (PRE)

Post-Copy (POST) ✓ ✓ ✓ ✗

PRE-POST ✓ ✓ ✓ ✗

CPU Throttling (THR) ✗

Delta Compression (DCdlt) ✓ ✗

Zstd Compression (DCZstd) ✓ ✗

DCdlt-DCZlib ✓ ✗ ✗

DCZlib-Async ✓ ✗

DCdlt-DCZlib-Async ✓ ✗ ✗

the destination host [42]. During the resume phase, the VM memory is

fetched from the source on demand as pages are accessed. Because each

page is transferred only once, post-copy can reduce the total migration

time, but page faults during execution can cause severe performance

degradation.

To combine the strengths of both methods, PRE-POST performs a

single iteration of pre-copy during which most of the memory is trans-

ferred. The VM is then resumed on the destination, any remaining mem-

ory pages are retrieved on demand. This hybrid strategy reduces perfor-

mance degradation and resume time relative to post-copy, while also

avoiding the overhead of multiple pre-copy rounds required by tradi-

tional pre-copy migration.

2.2.2. Optimizations

The presented framework builds on the KVM/QEMU virtualization

machine manager (VMM) [43], which supports several orthogonal live

migration optimizations aimed at improving performance or reducing

the volume of transferred data. These include CPU throttling and various

forms of memory compression. While effective, such techniques often

require additional CPU or memory resources.

CPU throttling (THR) reduces the virtual CPU speed to slow down

the rate at which memory is modified, thereby decreasing the amount

of data transferred during each iteration in the prepare phase. Throttling

is typically only activated after several iterations if the number of dirty

pages remains high. This optimization can reduce both total migration

time and downtime but may cause significant performance degradation

within the VM. As a result, it is typically avoided in scenarios with strict

performance SLOs.

Compression-based optimizations apply various algorithms to reduce

memory volume before transfer. Delta compression (DCdlt) tracks

changes to memory pages between pre-copy iterations and transfers only

the differences. It is computationally light but memory-intensive, as it

requires maintaining copies of modified pages. Zlib compression (DC-

Zlib) and Zstd compression (DCZstd) [44] use general-purpose com-

pression algorithms to shrink the memory footprint. These techniques

require considerable CPU resources on the source host and may be im-

practical when the migration is triggered by resource pressure.

Additional variants refine or combine these techniques. DCdlt-

DCZlib applies Zlib compression to memory pages that have first been

delta-compressed. DCZlib-Async and DCdlt-DCZlib-Async eliminate

synchronization between the compression thread and pre-copy itera-

tions, allowing the compression process to operate asynchronously. As

a result, the compression thread can begin compressing re-dirtied pages

without waiting for the current pre-copy round to complete.

2.3. Live migration metrics

Throughout this paper, we utilize the following six metrics to evalu-

ate the performance of VM live migration:

1. Total migration time (TT): The elapsed time from the start of the

migration until the VM is fully operations on the destination host.

2. Downtime (DT): The duration of the stop-and-copy phase, i.e., the

period during which the VM is paused.

3. Transferred data volume (TD): The total amount of data trans-

ferred from the source to the destination during migration.

4. Performance degradation (PERF): The impact of migration on

VM performance, measured as the deviation from a guaranteed

instructions-per-second (IPS) baseline.

5. Additional host CPU utilization (CPU): The increase in CPU usage

on the source host caused by the migration process.

6. Additional memory utilization (MEM): The amount of memory

consumed on the source by the live migration algorithm.

Table 1 summarizes the nine combinations of transfer algorithms

and optimizations evaluated in this work, highlighting their strengths

and weaknesses with respect to the six performance metrics. While

additional migration optimizations have been proposed in prior work

[23–30,32], they are not supported by current mainstream hypervisors

and are thus excluded from our evaluation.

2.4. Related work

Live migration techniques have evolved significantly over the past

decades, creating the challenge of selecting appropriate approaches for

specific operational scenarios. Several studies [33,34,45] have proposed

heuristic-based selection guidelines, but these lack systematic imple-

mentation frameworks for automated decision-making in production en-

vironments. Concurrently, researchers have developed analytical and

machine learning models to predict migration performance. While an-

alytical approaches provide theoretical insights, they require complex

calibration and often fail to adapt to dynamic data center conditions.

Jo et al. [38] presented a significant advancement with their ma-

chine learning-based prediction model trained on 40,000 migrations

across diverse workloads. Their model predicts six performance met-

rics for five migration techniques, demonstrating that appropriate

technique selection reduces SLO violations. Our work extends this foun-

dation by improving prediction accuracy and supporting additional mi-

gration techniques.

Sandpiper [6], one of the earliest dynamic VM migration systems,

implements hotspot mitigation through periodic resource utilization

profiling and time series prediction. It selects VMs for migration using

a heuristic algorithm that prioritizes based on resource footprints (CPU,

memory, network utilization). However, Sandpiper relies exclusively on

pre-copy migration and estimates costs primarily on VM memory size,

limiting optimization across diverse workloads.

CloudScale [7] offers a framework for dynamic VM scaling and re-

source conflict resolution through migration. It incorporates predic-

tive resource demand modeling to prevent SLO violations proactively.

While considering migration overhead to minimize disruptions, Cloud-

Scale employs a simplistic linear regression model for cost estimation,

which inadequately captures the non-linear relationships between VM
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characteristics and migration performance, particularly for memory-

intensive workloads [38,46,47].

CAMIG [48] addresses concurrent migration challenges by consider-

ing resource dependencies among multiple VMs, using maximal cliques

and independent sets to minimize interference. Unlike our approach that

focuses on technique selection for individual migrations, CAMIG opti-

mizes the scheduling order of multiple simultaneous migrations without

considering the specific migration technique used for each VM.

Belgacem et al. [49] propose a model that applies machine learning

to optimize both VM selection and the migration process itself. Their

approach focuses primarily on reducing migration frequency and en-

ergy consumption by considering various cloud environment attributes.

While their work emphasizes when to migrate and which VMs to select,

our framework concentrates on how migrations should be performed

through optimal technique selection across multiple available methods.

Haris et al. [50] employ machine learning to predict downtime in

pre-copy live migration, dynamically terminating iterations when pre-

dicted downtime falls below a threshold. While their approach optimizes

a single migration technique, our framework selects from multiple tech-

niques and considers a broader range of metrics beyond just downtime.

Gong et al. [51] explore deep reinforcement learning for optimiz-

ing VM migration decisions in dynamic resource allocation scenarios.

Their theoretical investigation focuses primarily on when to migrate

VMs, whereas our work implements and evaluates a practical framework

that determines how to perform migrations through optimal technique

selection.

3. Challenges and opportunities in live migration

The analysis of the Google cluster trace datasets [52–54] provides

detailed insights into resource usage in large-scale cloud environments.

A key observation from these datasets is the highly dynamic nature of

resource utilization, caused by a diverse mix of short- and long-running

jobs with varying demands. This workload volatility leads to frequent

transitions between underutilized and overutilized states across nodes.

Fig. 2 shows the results of our simulation based on the publicly avail-

able Google cluster trace data, which covers a large-scale production

environment.

To avoid performance degradation during peak demand, data cen-

ters often apply conservative policies that prevent overcommitting re-

sources, resulting in frequent periods of underutilization during normal

operation. Fig. 2 illustrates the resource usage of consolidating four ran-

dom nodes into one and classifying them as overutilized (resource usage

over 70%) or underutilized (below 50%). The number of over- and un-

derutilized nodes fluctuates significantly over short intervals. These re-

sults demonstrate the need for live migration to enable continuous and

adaptive VM placement.

Despite its potential, live migration is often used with a fixed mi-

gration technique, without considering the workload characteristics of

the VM or the state of the host. This is suboptimal, as no single method

performs best under all conditions. For example, compression-based ap-

proaches are ineffective for incompressible memory, and different VM

workloads or host states – such as CPU load or network bandwidth – re-

quire different trade-offs. Recent work [33,38,45] shows that selecting

the appropriate migration technique can significantly reduce the migra-

tion overhead.

Modern orchestration frameworks do not support dynamic selection

of migration techniques. Even Google, which supports both pre-copy
and post-copy [10], does not automatically choose between them based

onworkload or system characteristics, mostly because the conditions un-

der which one technique outperforms another are not well understood.

Fig. 3 demonstrates the impact a chosen technique can have on VM

performance using a moderately CPU- and memory-intensive workload:

Pre-copy (PRE) sustains stable performance but requires significantly
more time to complete the migration (42𝑠). With post-copy (POST), the
migration completes after 25𝑠; however, the VM experiences a severe

performance degradation, particularly immediately after being restarted

on the destination node (timestamp 6–13𝑠).
To fully exploit the benefits of live migration, data centers require an

intelligent framework that dynamically selects the most suitable tech-

nique based on current workload behavior, system state, and SLO con-

straints.

In addition, modern data centers are often composed of heteroge-

neous nodes with varying hardware capabilities (e.g., CPU architecture,

core count, memory bandwidth). This heterogeneity further complicates

live migration, as the performance of a migrated VM may differ signif-

icantly depending on the destination node’s characteristics. Accurately

predicting the impact of migration in such environments requires mod-

els that can capture and utilize detailed performance metrics from both

the source and destination nodes.

4. Predicting live migration performance

Selecting the optimal migration technique is challenging due to the

large number of available techniques, the diversity of VM workloads,

and the variability in system and network conditions. Constructing ana-

lytical models is impractical, especially at the scale required for modern

data centers.

To address this, we employ machine learning to predict the perfor-

mance of different migration techniques. Building on our prior work

[38], we extend the model to support nine live migration techniques

and six key performance metrics. These predictions form the basis of

our dynamic migration strategy, enabling accurate, real-time selection

of the most suitable technique for each migration event.

4.1. Problem formulation

We formulate technique selection as a multi-output regression prob-

lem. Given a set of features characterizing the VM workload and system

state, the model predicts the expected performance of each migration

technique across six metrics. These predictions allow the framework to

select the technique that best satisfies the current SLOs.

The model inputs (features) fall into four categories:

• VM configuration: memory size, vCPU count
• Memory access behavior: page dirty rate, spatial/temporal locality
• Host resource utilization: CPU and memory load on source and des-

tination
• Network conditions: available bandwidth, latency

These features are collected through lightweight profiling immedi-

ately before migration. The model outputs are the six performance met-

rics defined in Section 2.3: TT, DT, TD, PERF, CPU, and MEM.

Fig. 2. Simulation of node consolidation using Google trace data [52]. Four

nodes are consolidated into one node and classified as over- (>70%) or under-

utilized (<50% resource utilization) based on the trace, which spans 29 days

of production workloads.
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Fig. 3. Effect of live migration technique selection on VM performance, in instructions per second (IPS). The figures plot the results for a workload migrated with

the PRE and POST technique, respectively. Migration is initiated at timestamp 0𝑠 in both figures. With PRE, the VM is able to sustain relatively stable performance,

both during and after migration. With POST, on the other hand, performance collapses almost completely immediately after the VM is restarted on the destination

host (timestamp 6 − 13𝑠). Both experiments were performed by migrating the same VM under identical conditions on our testbed.

Fig. 4. 10-fold cross validation of the SVR. Bagg and ExtraTrees model (Geo-mean absolute error).

4.2. Model evaluation and selection

We extend our prior work [38], which supports five techniques using

SVR with bagging, by scaling the model to support nine techniques and

evaluating several machine learning algorithms: Support Vector Regres-

sion (SVR), Random Forests, Gradient Boosting, and Extremely Random-

ized Trees (ExtraTrees). Our evaluation uses 10-fold cross-validation

over a dataset of 55,000 migrations and compares models using nor-

malized Root Mean Squared Error (RMSE), training time, and inference

time.

ExtraTrees outperforms the alternatives and is selected for deploy-

ment. Compared to SVR with bagging, ExtraTrees excel in

• Prediction accuracy: ExtraTrees achieves the lowest average RMSE

across all metrics, with improvements of up to 15.4% over SVR at a

95% confidence level [55]. The gains are most pronounced for PERF
and DT.

• Training time: ExtraTrees has a training complexity of 𝑂(𝑁𝐷 log𝑁)
versus 𝑂(𝑁3) for SVR [56], and is empirically about twice as fast to
train.

• Inference speed: ExtraTrees achieves average inference times 11x

faster than SVR, with𝑂(log𝑁) complexity compared to SVR’s𝑂(𝐾𝐷)
[57].

Fig. 4 shows cross-validation results for SVR and ExtraTrees on the

training dataset. Each record in the dataset includes VM characteristics

obtained through black-box profiling, the state of involved hosts, the

applied migration technique, and observed performance metrics. The

dataset includes both synthetic and real-world workloads covering a

broad parameter space.
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Each migration technique and metric combination is modeled inde-

pendently to capture technique-specific relationships between features

and outcomes. This results in improved prediction accuracy over a uni-

fied model.

4.3. Model robustness and adaptability

The training dataset includes a wide range of synthetic and real-

world benchmarks, enabling the model to make consistently accurate

predictions – especially with respect to relative performance differences

between migration techniques. This level of accuracy is sufficient for

selecting the technique that minimizes SLO violations and maximizes

resource efficiency, as shown in Section 6.

While the absolute prediction accuracy may degrade for edge cases

or unusual workload behaviors not represented in the training set, in

practice, this limitation is not critical. VM workloads in data centers

tend to exhibit relatively stable characteristics. When new workload

types emerge, they can be incorporated into the training set to improve

prediction accuracy over time. Standard machine learning approaches,

such as transfer learning, can be employed to reduce the overhead of

adapting the model to new workload domains, ensuring continued ac-

curacy with minimal retraining effort.

By collecting these metrics from both the source and destination

nodes, the model can learn to predict the performance impact of migra-

tion even when the underlying hardware differs. This enables accurate

estimation of SLO violations and migration overheads in heterogeneous

environments, as demonstrated in our evaluation.

In particular, compression is applied during the prepare phase on the

source node, and decompression on the destination node incurs negli-

gible overhead. This ensures that the destination node’s performance is

not adversely affected during migration.

5. Framework design and implementation

This section presents the design and key components of our frame-

work. The system consists of a single orchestrator managing multiple

worker nodes within a co-located rack. Each worker runs an agent that

enables coordinated VM management and reports local resource met-

rics.

5.1. Framework architecture

Fig. 5 illustrates the system architecture. The framework runs on a

QEMU/KVM hypervisor and consists of two main components: the or-

chestrator and the node-level agents. The orchestrator includes a cluster

manager, two schedulers, a migration technique selector, and perfor-

mance prediction models. Agents operate as background daemons on

each worker node, handling VM lifecycle events and reporting local re-

source usage to the orchestrator.

5.1.1. Components

Theworkload schedulermanages VM deployment based on incom-

ing workload requests. It uses cached resource availability data that is

updated continuously during provisioning to place VMs on nodes with

Fig. 5. High-level organization of the framework.
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sufficient capacity. After selecting a target node, the scheduler instructs

the cluster manager to create the VM and launch the specified work-

load. The cluster scheduler ensures balanced resource usage across

nodes by periodically polling resource metrics. It identifies overloaded

nodes (hotspots) and underutilized nodes, and triggers migrations to re-

distribute workloads. For hotspot mitigation, the scheduler selects the

node with the lowest resource usage as the migration destination. Node

selection for migration is based on a configurable policy, which may use

random selection, round-robin scheduling, or dedicated fallback nodes.

In hotspot scenarios, the default policy typically selects the least-utilized

node to maximize balancing efficiency. The migration event monitor

is configured with thresholds for CPU and memory usage, profiling in-

tervals and durations, and selection metrics for candidate VMs. These

include memory write rates, CPU utilization, and network usage. Profil-

ing ensures that the VM with the largest resource footprint is selected

as the migration source.

Following the approach introduced in Sandpiper [6], our framework

uses a resource volume metric to select VMs for migration. Algorithm 1

shows how the cluster scheduler generates migration plans. The function

getTheLargestVM() (line 11) selects the VM with the largest resource

footprint, using the definition from [6]. The time complexity of Algo-

rithm 1 is 𝑂(𝑛 + 𝑣 ∗ 𝑡), where 𝑛 is the number of nodes, 𝑣 the number

of VMs on the hottest node, and 𝑡 the number of available migration

techniques. The algorithm first performs a linear scans across nodes to

detect the hottest and the coldest node (lines 2–8). The largest VM on the

hottest node is selected for migration, and the best migration technique

determined (Section 5.2.3). For consolidation, the scheduler determines

whether the current workloads can be packed onto fewer physical nodes.

It uses a modified First-Fit Decreasing bin-packing heuristic [58–60]. If

consolidation is feasible, a migration plan is generated that minimizes

the number of migrations while preventing overloads. This allows idle

nodes to be shut down, improving energy efficiency. One orchestrator

can handle up to several racks of nodes; for larger deployments, a hier-

archy of orchestrators that combine local and global load balancing is

required.

Algorithm 1 Load balancing algorithm.

1: function Load Balancing

2: ℎ𝑜𝑡𝑡𝑒𝑠𝑡 ← null

3: 𝑐𝑜𝑙𝑑𝑒𝑠𝑡 ← null

4: for all 𝑛𝑜𝑑𝑒 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟∕𝑟𝑎𝑐𝑘 do
5: if 𝑛𝑜𝑑𝑒 is hotter than ℎ𝑜𝑡𝑡𝑒𝑠𝑡 then

6: ℎ𝑜𝑡𝑡𝑒𝑠𝑡 ← 𝑛𝑜𝑑𝑒

7: else if 𝑛𝑜𝑑𝑒 is colder than 𝑐𝑜𝑙𝑑𝑒𝑠𝑡 then

8: 𝑐𝑜𝑙𝑑𝑒𝑠𝑡 ← 𝑛𝑜𝑑𝑒

9: if ℎ𝑜𝑡𝑡𝑒𝑠𝑡 == null then
10: return null

11: 𝑣𝑚 ← getLargestVM(ℎ𝑜𝑡𝑡𝑒𝑠𝑡)
12: 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 ← getBestLMAlgo(ℎ𝑜𝑡𝑡𝑒𝑠𝑡, 𝑐𝑜𝑙𝑑𝑒𝑠𝑡, 𝑣𝑚)
13: return (𝑣𝑚, 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒, ℎ𝑜𝑡𝑡𝑒𝑠𝑡, 𝑐𝑜𝑙𝑑𝑒𝑠𝑡)

5.1.2. Implementation

The framework consists of approximately 4000 lines of Python code.

The cluster orchestrator communicates with worker node agents using

gRPC [61] for efficient remote procedure calls. Agents run as daemon

processes and interact with QEMU VMs via the QEMUMachine Protocol

(QMP) [43].

Both the orchestrator and the agents are configurable via ded-

icated configuration files. We use a modified QEMU/KVM monitor

that supports detailed VM profiling, including the analysis of mem-

ory access pattern. This monitor leverages Intel’s NPT memory man-

agement hardware to track memory page modifications with minimal

overhead.

5.2. Migration policy

This subsection outlines how the framework integrates migration-

aware Service Level Objectives (SLOs) and supports customizable man-

agement policies for different operational contexts.

5.2.1. Service level objectives

The framework supports a set of migration-related SLOs that address

both user-facing and operator-facing priorities. Each SLO can define ei-

ther an upper or lower threshold: upper thresholds specify a maximum

value beyond which an SLO violation occurs, while lower thresholds

define a minimum acceptable value that must not be breached. The rel-

ative importance of SLOs can be specified by a weight for each SLO.

User SLOs focus on application availability and performance. The

framework currently supports the following metrics, capturing the im-

pact of migration on VM execution.

• Downtime (DT) is a upper-bound SLO to limit and quantify service

interruption during migration, and
• Performance preservation (PERF), a lower-bound SLO measured in

instructions per second (IPS) to ensure a certain level of performance

during migration.

Operator SLOs address system-level efficiency and resource usage.

All operator SLOs specify upper thresholds.

• Total migration time (TT),
• Transferred data volume (TD), and
• Additional resource utilization on the source host, such as CPU and

memory usage (CPU, MEM).

These SLOs allow operators to define policies that focus on various

aspects by specifying threshold values, assigning relative importance

through weights, and selecting optimization targets. These policies can

be adapted at runtime to respond to changing workload conditions or

business priorities, without requiring changes to the system architec-

ture.

5.2.2. Policy support

The presented framework supports flexible adaptation to diverse

operational scenarios through migration policies, enabling data cen-

ter operators to shape VM migration accordingly. A migration policy

guides the migration selection process and includes a set of user-facing

and operator-oriented weighted SLOs, along with an optimization tar-

get. The migration selector predicts the SLOs and migration metrics for

all available techniques and selects the one expected to minimize the

weighted SLO violations and perform best with respect to the optimiza-

tion target.

To illustrate the concept, this work evaluates two policies: hotspot

mitigation and consolidation. In hotspot mitigation, the goal is to alle-

viate overload on selected nodes while maintaining application respon-

siveness. Policies in this category typically assign high weights (0.6–0.8)

to performance preservation, enforce strict downtime limits, and priori-

tize minimizing total migration time. In contrast, consolidation aims to

reduce the number of active nodes by migrating workloads onto fewer

machines. These policies emphasize operational concerns such as trans-

ferred data volume and additional resource usage and tend to assign

moderate weights to performance metrics.

5.2.3. Migration algorithm selection

The selection of the migration algorithm is based on a multi-

objective optimization function. Given are 𝑁 live migration algorithms

𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑁} and 𝐾 metrics 𝑀 = {𝑚1, 𝑚2,… , 𝑚𝐾}. The SLOs 𝑆 =
{𝑠1, 𝑠2,… , 𝑠𝐾} are defined over the same space as the metrics (i.e., there
can be one SLO per metric). Each SLO 𝑠𝑘 has an associated threshold

value 𝜃𝑘 that, if violated, constitutes an SLO violation. Additionally,
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each SLO is assigned a weight 𝑤𝑘 that reflect the SLO’s significance –

the larger the weight, the more desirable is the optimization of the SLO.

For each available migration techniques 𝑇 = {𝑡1, 𝑡2,… , 𝑡𝑛}, the machine
learning models predict the six key metrics defined in Section 2.2.

For a metric 𝑚𝑘 with SLO 𝑠𝑘 and a prediction 𝑝𝑘, we define an abso-

lute and weighted SLO violation score. The absolute SLO violation score

𝑉𝑎𝑏𝑠 assumes a value of 1 if the SLO is expected to be violated and 0

otherwise:

𝑉𝑎𝑏𝑠(𝑝𝑘, 𝜃𝑘) =
⎧⎪⎨⎪⎩
1 if upper-bound limit and 𝑝𝑘 > 𝜃𝑘

1 if lower-bound limit and 𝑝𝑘 < 𝜃𝑘

0 otherwise (no violation)

(1)

The weighted SLO violation score captures the weighted relative ex-

tend of an SLO violation by multiplying the normalized SLO violation

with its weight:

𝑉𝑟𝑒𝑙(𝑝𝑘, 𝜃𝑘, 𝑤𝑘) = 𝑉𝑎𝑏𝑠(𝑝𝑘, 𝜃𝑘) ⋅𝑤𝑘 ⋅
|𝑝𝑘 − 𝜃𝑘|

𝜃𝑘
(2)

As an example, consider an upper-bound threshold of 10 and a pre-

dicted value of 15 for a given metric and migration technique. Then,

𝑉𝑎𝑏𝑠(15, 10) = 1 because the predicted value of the metric exceeds the
its SLO threshold. Assuming a weight of 0.2, the relative SLO violation

score 𝑉𝑟𝑒𝑠(15, 10, 0.2) = 0.1, capturing the fact that the SLO metric is vi-

olated by a factor of 0.5 (
|15−10|

10 ) multiplied by the weight of 0.2.

The total absolute and weighted SLO violation scores for a technique

𝑡𝑛 are obtained by summing up the absolute/weighted SLO violation

scores for each metric:

𝑉 𝑡𝑜𝑡
𝑎𝑏𝑠

(𝑡𝑛) =
𝐾∑
𝑘=1

𝑉𝑎𝑏𝑠(𝑝𝑘, 𝜃𝑘) (3)

𝑉 𝑡𝑜𝑡
𝑟𝑒𝑙

(𝑡𝑛) =
𝐾∑
𝑘=1

𝑉𝑟𝑒𝑙(𝑝𝑘, 𝜃𝑘, 𝑤𝑘) (4)

The chosen technique 𝑡∗ is selected from the set of all techniques that

attain the minimum of 𝑉 𝑡𝑜𝑡
𝑟𝑒𝑙
. If this set contains multiple techniques, the

one that maximizes the objective function𝑂(𝑡𝑛) is selected. The objective
function is defined analogously to 𝑉 𝑡𝑜𝑡

𝑟𝑒𝑙
and quantifies the distance of a

metric from its threshold. Note that the objective weights are defined

independently of the SLO weights.

𝑂𝑟𝑒𝑙(𝑝𝑘, 𝜃𝑘, 𝑤𝑘) =
⎧⎪⎨⎪⎩
𝑤𝑘 ⋅

(
1 − 𝑝𝑘

𝜃𝑘

)
if upper-bound limit

𝑤𝑘 ⋅
(
𝑝𝑘

𝜃𝑘
− 1

)
if lower-bound limit

(5)

𝑂𝑡𝑜𝑡
𝑟𝑒𝑙
(𝑡𝑛) =

𝐾∑
𝑘=1

𝑂𝑟𝑒𝑙(𝑝𝑘, 𝜃𝑘, 𝑤𝑘) (6)

As an example, consider one SLO with an lower-bound threshold of

10, a predicted value of 15, and a weight of 0.5 for a given migration

technique and metric. Then, 𝑂𝑟𝑒𝑙(15, 10, 0.5) = 0.5 ⋅ ( 1510 − 1) = 0.25. For a
second SLO, the upper-bound threshold is 50, the predicted value 40,

and the weight 0.5, yielding 𝑂𝑟𝑒𝑙(40, 50, 0.5) = 0.5 ⋅ (1 − 40
50 ) = 0.1 and a

total objective score of 𝑂𝑡𝑜𝑡
𝑟𝑒𝑙

= 0.25 + 0.1 = 0.35.
The set of optimal techniques 𝑇 ∗ is thus the set of techniques that

minimize 𝑉 𝑡𝑜𝑡
𝑟𝑒𝑙
:

𝑇 ∗ = argmin
𝑡𝑛∈𝑇

𝑉 𝑡𝑜𝑡
𝑟𝑒𝑙

(𝑡𝑛) (7)

If exactly one technique satisfies all SLOs, it is chosen. Otherwise,

we select the technique that maximizes the objective score:

𝑡∗ =
⎧⎪⎨⎪⎩
𝑡𝑛 ∈ 𝑇 ∗ |𝑇 ∗| = 1
argmax
𝑡𝑛∈𝑇 ∗

𝑂𝑡𝑜𝑡
𝑟𝑒𝑙
(𝑡𝑛) otherwise

(8)

5.2.4. Policy determination guidelines

To define effective migration policies, we recommend the following

systematic approach:

1. Identify business priorities: Determine which aspects of migration

have the greatest impact on service delivery and operational cost.

Customer-facing services often prioritize performance preservation

and minimal downtime.

2. Translate requirements into SLO thresholds: Map business re-

quirements to measurable metrics. For example, tail-latency related

Service Level Agreements (SLAs) can be translated into SLOs that

guarantee a minimum level of performance (PERF).
3. Assign weights based on criticality: Allocate higher weights to

metrics that are closely tied to customer SLAs or essential operations.
• Quantitative approach: Perform a sensitivity analysis to mea-

sure application impact under varying degrees of SLO violation.

Weights are assigned in proportion to the observed performance

degradation.
• Risk-based weighting: Assess the operational risk, such as financial

loss or reduced customer satisfaction, associated with violating

each SLO. Assign higher weights to higher-risk metrics.
• Historical analysis: Review past migration events to identify met-

rics that correlated with service disruptions or performance re-

gressions.

4. Select an optimization target: When multiple live migration tech-

niques satisfy all SLOs, the chosen technique is selected based on

optimization metric. This metric typically reflects the greatest oper-

ational benefit for the given context.

5. Customize by context: Adapt thresholds, weights, and optimization

targets to suit specific workloads or changing conditions. Different

application classes may require distinct policy profiles.

6. Validate and refine: Test derived policies in a non-production en-

vironment and refine them based on observed outcomes. Iterative

tuning improves accuracy and resilience.

The weights used in the evaluation (Table 3) were derived using this

methodology, with emphasis on the quantitative approach. The higher

weights assigned to performance preservation in hotspot mitigation re-

flect the critical need of maintaining application responsiveness during

periods of resource contention. In contrast, consolidation policies em-

phasize network efficiency to minimize the migration overhead during

non-urgent workload redistribution.

6. Evaluation

This section presents a comprehensive evaluation of the framework

across a range of data center scenarios. The evaluation begins with an as-

sessment of individual live migration techniques, focusing on their per-

formance and SLO violation scores in a controlled cluster environment.

Then, the machine learning model is employed to select appropriate

migration techniques under defined policy constraints. We compare the

presented framework, labeled GUIDED against the nine static migration
policies (PRE, POST, etc.) as well as an oracle (ORACLE) that always selects
the best migration policy for the given scenario. The oracle technique

represents an idealized baseline in which all migration outcomes are

known in advance. Any deviation between GUIDED and ORACLE in terms
of the SLO violation count and/or score is attributable to inaccuracies

in performance prediction produced by the model.

6.1. Environment

The evaluation is conducted on an internal research cluster consist-

ing of six heterogeneous physical nodes. Four nodes are equipped with

octa-core Intel Skylake i7-6700 processors and 32GB of physical mem-

ory. The other two nodes use Intel(R) Xeon(R) Silver 4114 2.20GHz

processors (10-core, 20-thread) with 64GB of memory. All nodes run

Ubuntu 20.04 with Linux kernel version 5.3.7. The cluster is inter-

connected via a 1 Gbit/s local network. QEMU/KVM version 4.5 pro-

vides hypervisor functionality, with each VM running Ubuntu 18.04
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Table 2

VM configurations for hotspot and consolidation scenarios.

Index
Hotspot Consolidation

Workload Cpus Memory Workload Cpus Memory

1 parsec.facesim 4 8 GB NPB.bt.A 2 2 GB

2 parsec.vips 1 8 GB tensorflow.CIFAR10 1 8 GB

3 parsec.vips 2 8 GB NPB.dc.A 2 8 GB

4 parsec.vips 2 4 GB parsec.vips 2 2 GB

5 parsec.vips 4 8 GB parsec.raytrace 1 8 GB

6 parsec.blacksholes 4 2 GB parsec.canneal 1 4 GB

7 parsec.x264 4 4 GB tensorflow.CIFAR10 1 4 GB

8 tensorflow.CIFAR10 4 2 GB tensorflow.CIFAR10 1 4 GB

9 parsec.vips 2 8 GB parsec.bodytrack 1 8 GB

10 parsec.blacksholes 2 2 GB parsec.x264 4 8 GB

11 parsec.vips 2 4 GB NPB.cg.B 2 2 GB

12 NPB.dc.A 4 8 GB parsec.raytrace 1 8 GB

13 parsec.bodytrack 4 2 GB NPB.bt.A 2 8 GB

14 tensorflow.CIFAR10 4 8 GB NPB.bt.C 1 4 GB

15 tensorflow.CIFAR10 4 2 GB NPB.cg.B 4 2 GB

16 parsec.blacksholes 4 8 GB NPB.bt.A 4 4 GB

17 parsec.vips 2 8 GB parsec.bodytrack 2 2 GB

18 parsec.vips 4 8 GB NPB.dc.A 4 2 GB

19 tensorflow.CIFAR10 4 8 GB parsec.blacksholes 2 2 GB

20 parsec.bodytrack 4 8 GB tensorflow.CIFAR10 4 4 GB

21 NPB.cg.B 4 2 GB NPB.ft.B 1 8 GB

22 tensorflow.CIFAR10 4 8 GB tensorflow.CIFAR10 4 4 GB

23 parsec.bodytrack 4 2 GB NPB.ft.B 1 4 GB

24 NPB.cg.B 4 8 GB NPB.cg.B 4 4 GB

25 parsec.vips 2 8 GB NPB.cg.B 1 8 GB

as its guest operating system. Disk images are accessed via network-

attached storage, with VM disk I/O traffic routed through the VM net-

work, thereby potentially introducing interference with migration oper-

ations.

The VMs are configured with 1–4 vCPUs and 2–8 GB of memory. The

migration metrics TT, DT and TD are measured directly at the hypervisor,
while PERF, CPU, and MEM are collected using Linux system tools such as

perf and pidstats. All results show the average of eight valid runs with

the same predefined random seeds to create random, yet reproducible

initial configurations.

6.2. Workloads

We select a diverse set of applications that reflect various workload

characteristics commonly observed in modern data centers. These work-

loads vary in resource usage, memory access behaviors, and computa-

tional intensity, capturing a broad spectrum of real-world application

scenarios.

The workloads were carefully selected to ensure comprehensive cov-

erage of both overload and consolidation scenarios. For overload sce-

narios, we include applications with high CPU and memory demands,

simulating conditions with significant resource contention. For consol-

idation, we use workloads with low to moderate resource usage, rep-

resenting typical situations where underutilized nodes can be consoli-

dated. This design ensures that the evaluation addresses a wide range of

operational challenges, from severe contention to energy-efficient opti-

mization opportunities.

Our evaluation includes the following three categories:

1. Computation-intensive parallel workloads: Eight applications

from the PARSEC benchmark suite [62] (Blackscholes, Bodytrack,

Canneal, Dedup, Facesim, Raytrace, Vips, and X264). These applica-

tions represent diverse domains such as financial modeling (Blacksc-

holes), computer vision (Bodytrack), engineering simulations (Can-

neal, Facesim), media processing (Vips, X264), and data compression

(Dedup). They demonstrate varying levels of parallelism, memory

access patterns, and CPU usage.

2. Scientific computing workloads: Six benchmarks from the NAS

Parallel Benchmarks (NPB) [63]: bt.A, bt.C, cg.B, dc.A, ft.B, and is.C.

NPB is a widely used benchmark suite designed by NASA to represent

the computation and data movement patterns of large-scale compu-

tational fluid dynamics (CFD) and scientific applications. Each NPB

kernel models a different class of scientific computation, and the se-

lected input sizes (problem classes A, B, and C) reflect a range of

computational intensities and memory requirements, following the

standard NPB specification1. This selection ensures that our evalua-

tion covers both moderate and large-scale scientific workloads, and

the diversity of NPB kernels allows us to assess the migration frame-

work under a variety of memory access and communication patterns.

3. Machine learning workloads: CIFAR-10 inference using Tensor-

Flow (Tensorflow.CIFAR10), representing modern AI workloads.

This application features distinct memory access patterns due to

large matrix operations and exhibits unique resource demands dur-

ing inference.

The complete list of workloads and their VM configurations is shown

in Table 2. All applications are executed using all available vCPUs of

the VM. To ensure reproducibility, workloads are selected using a fixed

random seed for each experiment.

This workload diversity enables evaluation across applications with:

• Varying memory modification rates
• Different degrees of spatial and temporal memory access locality
• A range of CPU utilization profiles (compute-bound vs. memory-

bound)
• Differing sensitivities to performance degradation during migration

6.3. Maintenance migration

The first scenario evaluates the performance of static migration tech-

niques with GUIDED in a migration scenario. The goal is to migrate away
all VMs of a node to allow maintenance due to, for example, a failing

hardware component. We place several VMs executing random work-

loads on a source node and serially migrate all VMs to other nodes until

the source node is empty. Fig. 6 shows the average from initiation to

1 https://www.nas.nasa.gov/software/npb_problem_sizes.html

https://www.nas.nasa.gov/software/npb_problem_sizes.html
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Fig. 6. Migration results for an urgent case.

completion of the migrations. We begin by evaluating the framework in

a time-critical scenario designed to validate the accuracy of the live mi-

gration performance prediction model. We observe that POST completes
migrations approximately in half the time as the standard PRE technique
and outperforms all other static techniques. With the total migration

time (TT) being the only concern, our framework GUIDED consistently
selects the POST technique for all migrations events, confirming that the
model is able to identify the optimal technique under a simple, single-

objective condition.

6.4. Policies for hotspot and consolidation scenarios

We now evaluate the framework under a range of hotspot and con-

solidation scenarios using complex, multi-metric policies. Table 3 lists

the six policies used in our experiments. These policies were designed

to reflect realistic operational priorities in modern data centers. Each

policy defines a set of SLO constraints (with associated weights) and

an optimization goal. The following paragraphs describe each policy in

more detail.

We first consider the three policies designed for hotspot mitigation

scenarios:

• Ensure performance: Designed for business-critical applications

with high performance preservation weight and moderate downtime

constraint. The optimization goal TT minimizes total migration time
when there are several viable migration techniques. This policy is

particularly relevant for high-value, customer-facing services where

performance preservation is essential.
• Traffic overload: Created for environments with network conges-

tion, this policy minimizes the transferred data volume while bal-

ancing performance and downtime. This policy is a good fit for situ-

ations with network bandwidth constraints or when the source nodes

are experiencing network congestion.
• High performance: This comprehensive policy targets hotspot mit-

igation while considering both application and infrastructure con-

straints. It balances application metrics with operational resource

limits. The policy aims to minimize the total migration time while

considering the broadest range of constraints.

Three policies represent consolidation scenarios:

• Save traffic: Emphasizes network efficiency by minimizing the

transferred data volume while maintaining moderate performance

requirements. The lower performance threshold acknowledges that

consolidation operations are often scheduled during off-peak hours

when a moderate performance impact is acceptable.
• Reduced downtime: Targeting services where availability is crit-

ical even during consolidation, this policy minimizes downtime as

its primary objective. It enforces a moderate downtime threshold,

maintains reasonable performance, and limits total migration time.
• Lowest operation cost: This resource-efficient policy minimizes to-

tal migration time while maintaining acceptable performance, mod-

erate downtime, and restricting memory overhead. It is designed for

large-scale consolidation operations where minimizing total migra-

tion duration is valuable for predictable operations planning.

The policies intentionally set different PERF thresholds for hotspot
(75-80%) and consolidation (50-70%) scenarios to reflect their distinct

operational priorities. VMs on overloaded nodes are already experienc-

ing performance interference, making performance preservation during

hotspot mitigation especially critical. In contrast, VMs selected for con-

solidation typically run on underutilized nodes and can tolerate mod-

erate performance degradation in exchange for infrastructure efficiency

gains.

6.5. Hotspot scenario

Load balancing is a critical operational strategy in data centers for

optimizing resource utilization and ensuring workload performance. A

node is classified as a hotspot when the resource demand exceeds a de-

fined threshold. Hotspots frequently occur when VM workloads exhibit

high dynamicity and are densely consolidated on a physical server. Ef-

fective hotspot management is essential for VM orchestration systems to

maintain high resource utilization while guaranteeing application per-

formance.

To evaluate the hotspot mitigation of the presented framework, we

generate hotspots by strategically placing VMs on selected physical

nodes. Each node is assigned three to four VMs executing randomly se-

lected workloads. Following Sandpiper’s approach [6], a node is clas-

sified as a hotspot if CPU utilization exceeds 75% in three out of five

measurements during a five-minute window with measurements every

60 seconds.

To compare the intelligent migration technique selection (GUIDED)
against static migration strategies, we first perform migrations using

Table 3

Policies defining an objective and SLOs.

Scenario Policy Name User SLOs Operator SLOs Optimize

Hotspot

Ensure Performance PERF: 75%, Weight: 0.7 DT: 1000ms, Weight:0.3 TT

Traffic Overload DT: 2000ms, Weight:0.3 PERF: 80%, Weight: 0.7 TD

High Performance DT: 2000ms, Weight: 0.2 PERF: 80%, Weight: 0.6 CPU: 100%, Weight: 0.1 MEM: 512MB, Weight: 0.1 TT

Consolidation

Save Traffic PERF: 50%, Weight: 1 TD

Reduced Downtime DT: 2000ms, Weight: 0.5 PERF: 70%, Weight: 0.3 TT: 60000ms, Weight: 0.2 DT

Lowest Operation Cost DT: 2000ms, Weight: 0.2 PERF: 70%, Weight: 0.7 MEM: 512MB, Weight: 0.1 TT
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GUIDED, then replay the exact same migration sequence using each static
migration technique. The ORACLE result is obtained by selecting the best-
performing migration technique for each event, based on the recorded

migration metrics.

The results are shown in Figs. 7 and 8. Fig. 7 presents the abso-

lute SLO violation scores (𝑉 𝑡𝑜𝑡
𝑎𝑏𝑠
) in the top row and the weighted SLO

violation score (𝑉 𝑡𝑜𝑡
𝑟𝑒𝑙
) in the bottom row for all nine static technique

selections, the presented framework (GUIDED), and the oracle across

the three hotspot policies defined in Table 3. Fig. 8 plots the absolute

value of the optimization metric for each policy. Across all three hotspot

scenarios, the presented framework achieves results that only slightly

behind ORACLE, validating the effectiveness of dynamic migration tech-
nique selection based on machine-learned performance prediction mod-

els. In two of the three scenarios, GUIDED produces the lowest number

of SLO violations among all static technique selections. In the Traffic

Overload scenario, DCdlt and DCZstd show slightly better SLO violation

counts and/or scores; however, when also including the optimization

metric (TD - transferred data volume), GUIDED outperforms both static
techniques. We also observe that the GUIDED only performs marginally
worse than ORACLE. This further demonstrates the high accuracy of the
migration performance prediction models. As a reminder, any deviation

from ORACLE is due to prediction inaccuracies.

6.6. Consolidation scenario

Consolidation aims to concentrate VMs on fewer nodes to allow

idle nodes to be powered down, thereby conserving energy. The pri-

mary distinction from load balancing lies in availability of resources:

Fig. 7. SLO violation counts and scores of hotspot mitigation scenarios.

Fig. 8. Optimization goal of hotspot mitigation scenarios.
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in consolidation scenarios, source nodes are typically underutilized,

which enables the use of more resource-intensive migration techniques

such as DCZlib-Async, DCdlt, DCdltDCZlib, DCdlt-DCZlib-Async, and
DCZstd.

To evaluate this scenario, the cluster is initialized by randomly plac-

ing 20 VMs with diverse workloads (Table 2). We then perform 25 mi-

grations using the consolidation policies defined in Table 3.

Figs. 9 and 10 show the results across the three consolidation sce-

narios. In the first scenario, which focuses on minimizing the transferred

data volume as its optimization target, most techniques, except DCdlt-
DCZlib and POST, achieve zero SLO violations. The GUIDED framework
outperforms all static techniques in optimizing the objective, even sur-

passing post-copy based techniques and approaching ORACLE perfor-

mance.

In the second scenario, which includes three SLO constraints and

prioritizes downtime minimization, the GUIDED selection records four

violations – only to be outperformed by THR with three violation – and
achieves the lowest weighted SLO violation score apart from the theo-

retical optimum ORACLE. While GUIDED does not match the downtime
of POST (91ms) or ORACLE (10ms), it maintains a competitive average
downtime of 160ms with fewer SLO violations.

In the final consolidation scenario, GUIDED again demonstrates the
best performance in terms of SLO violation count and violation score

across all static techniques. It achieves total migration times comparable

to PRE-POST, which closely follows POST in optimization performance.
These results confirm that model-based, dynamic migration tech-

nique selection effectively reduces the Total Cost of Ownership (TCO)

during VM consolidation by using fewer resources and completing

Fig. 9. SLO violation counts and scores of consolidation scenarios.

Fig. 10. Optimization goal of consolidation scenarios.
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Fig. 11. Selected migration techniques.

migrations more efficiently than any single-technique approach. Con-

sidering the combined metrics violation count, violation score, and op-

timization performance, GUIDED closely approximates the theoretical op-
timum represented by ORACLE.

6.7. Analysis of technique selection

Fig. 11 shows the migration techniques selected by GUIDED across the
six policies: three hotspot scenarios (left bars) and three consolidation

scenarios (right bars).

In hotspot scenarios, where resources are scarce and constraints are

tight, we observe a wide range of selected techniques. Selecting an ap-

propriate migration strategy in this context is challenging, as it must

account for VM workload characteristics, the local resource situation,

and strict SLO requirements. The model handles this complexity effec-

tively. For example, under the Ensure Performance policy (left-most bar),

throttling and compression-based techniques are frequently selected, as

Fig. 12. Classification of SLO violations: blue bars indicate correctly predicted violations (true positives), orange bars indicate missed violations (false negatives).

they offer a favorable trade-off between performance preservation and

total migration time.

In contrast, consolidation scenarios show less variation in technique

selection. Since the source nodes are underutilized and the SLO thresh-

olds are more relaxed, most techniques avoid violations. As a result,

the model focuses primarily on optimizing the target metric. Under the

Save Traffic policy, DCdlt-DCZlib is selected for 19 out of 25 migra-

tions. This reflects the model’s prediction that delta compression com-

bined with Zlib achieves the greatest data reduction for the observed

memory access patterns, while staying within acceptable performance

bounds.

The PRE-POST technique is frequently chosen across all three con-
solidation scenarios. It offers fast migration completion with a moder-

ate impact on VM performance during the recovery phase. Given the

lower PERF thresholds (50-70%) in these policies, the model correctly
identifies PRE-POST as a viable choice that completes migrations quickly
without violating constraints.

Interestingly, in hotspot scenarios, techniques such as DCZlib and

DCdlt are selected more frequently than expected. One might anticipate
that faster techniques like POST or PRE-POST would dominate. However,
the model accurately predicts that post-copy methods would cause sig-

nificant performance degradation for the given workloads, which is un-

acceptable under stricter performance SLOs. Consequently, the model

favors compression-based approaches that better preserve performance

while maintaining reasonable migration durations.

The results demonstrate the model’s ability to navigate the com-

plex relationship between workload characteristics, infrastructure con-

ditions, and technique behavior. Rather than applying static heuristics,

the model dynamically adapts its recommendations to the specific con-

straints and objectives of each migration scenario to strike a balance

between SLO compliance and operational efficiency.

6.8. Prediction accuracy and SLO violation analysis

The prediction model shows varying accuracy across the six migra-

tion metrics. As seen in Table 4, downtime (DT) exhibits the highest
relative error (GMRE = 0.39). This is primarily due to the substantial

variance between techniques: post-copy methods yield consistently low

downtimes (around 10ms) by resuming the VM early, whereas pre-copy

techniques often incur much longer and less predictable downtimes, par-

ticularly under memory-intensive workloads. During the stop-and-copy

phase, the remaining dirty pages must be transferred while the VM is

paused, resulting in downtimes that can differ by orders of magnitude

depending on instantaneous memory activity.

Downtime prediction is further complicated by its sensitivity to tran-

sient factors such as network congestion and host CPU scheduling dur-

ing the final migration phase. Despite these challenges, the model based
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Table 4

Model prediction Generalized Mean Absolute Er-

ror (GMAE) and Generalized Mean Relative Error

(GMRE) across all evaluated metrics.

Metric GMAE GMRE

Total migration time (TT) 4161.02 0.14

Downtime (DT) 84.76 0.39

Transferred data volume (TD) 338.68 0.13

Performance degradation (PERF) 0.08 0.09

Add. host CPU utilization (CPU) 2.12 0.08

Add. memory utilization (MEM) 57.47 0.52

on ExtraTrees regression (see Section 5) accurately captures the relative

performance differences between techniques. Relative accuracy is suf-

ficient for guiding technique selection, as the framework requires only

the correct ranking of candidate techniques to avoid SLO violations in

most cases.

Fig. 12 quantifies the effect of prediction errors on actual SLO com-

pliance. Blue bars represent correctly predicted violations (true pos-

itives), while orange bars indicate unexpected violations (false neg-

atives). While some violations remain undetected due to prediction

inaccuracies, the overall classification accuracy remains high, confirm-

ing the model’s practical effectiveness.

On average, the model achieves a relative prediction error of approx-

imately 22.5% across all metrics. Notably, the relative error is higher

for downtime (39%) and memory overhead (52%), primarily due to the

high variability and sensitivity of these metrics to transient system con-

ditions. While the model achieves low prediction errors for most met-

rics, these results highlight the importance of continued refinement, es-

pecially for metrics such as downtime and memory overhead, where

prediction errors are most pronounced. Future work may incorporate

uncertainty estimation or online adaptation mechanisms to further im-

prove reliability under highly variable conditions.

7. Conclusion

This paper presents a machine-learning-based framework for intelli-

gent VM live migration in data centers. Unlike traditional approaches

that rely on static technique selection, our framework dynamically

chooses the most suitable migration strategy for each event based on

workload characteristics, system conditions, and policy-driven Service

Level Objectives (SLOs). The core of the framework is a set of perfor-

mance prediction models that estimate key migration metrics for all

supported techniques, enabling multi-objective optimization under real-

world constraints.

The framework is efficient, lightweight, and suitable for rack-scale

environments. It integrates seamlessly with QEMU/KVM via gRPC and

QMP, and supports a broad range of migration techniques, including

pre-copy, post-copy, and compression-based optimizations.

We evaluated the framework across diverse hotspot mitigation and

consolidation scenarios using workloads from PARSEC, NPB, and Ten-

sorFlow. The results show that the presented approach consistently

outperforms static technique selection, often matching or closely ap-

proximating an oracle that has perfect foresight. The framework re-

duces SLO violations, improves migration efficiency, and adapts to both

performance-critical and cost-driven operational goals.

The prediction model achieves a relative error of approximately

15% across all metrics. While absolute accuracy varies – particularly

for downtime due to its sensitivity to transient conditions – the model

reliably predicts relative performance differences between techniques,

which is sufficient for effective decision-making in most scenarios. Er-

rors that do occur tend to result in minor deviations from the oracle

baseline.

A limitation of the current approach lies in generalization: while the

model performs well on a diverse dataset of synthetic and real work-

loads, its accuracy on entirely novel workload types remains unverified.

Future work will explore online learning and transfer learning to ex-

tend adaptability, as well as the incorporation of confidence estimation

to guide fallback decisions under uncertainty.

Overall, this work demonstrates that intelligent, workload-aware mi-

gration technique selection is both feasible and beneficial. By combining

predictive modeling with flexible policy definition, data centers can im-

prove application performance, reduce operational overhead, and better

meet business objectives under dynamic workloads.
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ently identifying and managing performance interference in virtualized environ-

ments, in: Proceedings of the 2013 USENIX Conference on Annual Technical Confer-

ence, USENIX ATC’13, USENIX Association, Berkeley, CA, USA, 2013, pp. 219–230.

http://dl.acm.org/citation.cfm?id=2535461.2535489.

[10] A. Ruprecht, D. Jones, D. Shiraev, G. Harmon, M. Spivak, M. Krebs, M. Baker-Harvey,

T. Sanderson, Vm live migration at scale, in: Proceedings of the 14th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments, VEE

’18, New York, NY, USA, ACM, 2018, pp. 45–56. https://doi.org/10.1145/3186411.

3186415

[11] Google cloud documentation, 2024. https://cloud.google.com/compute/docs/

instances/live-migration-process.

[12] Google cloud platform blog, 2024. https://goo.gl/Ui3HFd.

https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/
https://cloud.google.com/compute
https://www.ibm.com/products/virtual-servers
https://www.ibm.com/products/virtual-servers
https://www.alibabacloud.com/
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0001
http://faculty.cs.gwu.edu/timwood/papers/NSDI07-sandpiper.pdf
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0001
http://faculty.cs.gwu.edu/timwood/papers/NSDI07-sandpiper.pdf
https://doi.org/10.1145/2038916.2038921
https://doi.org/10.1145/2038916.2038921
https://doi.org/10.1145/1508293.1508300
https://doi.org/10.1145/1508293.1508300
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0004
http://dl.acm.org/citation.cfm?id=2535461.2535489
https://doi.org/10.1145/3186411.3186415
https://doi.org/10.1145/3186411.3186415
https://doi.org/10.1145/3186411.3186415
https://doi.org/10.1145/3186411.3186415
https://cloud.google.com/compute/docs/instances/live-migration-process
https://cloud.google.com/compute/docs/instances/live-migration-process
https://goo.gl/Ui3HFd


Y. Cho et al.

[13] R. Eswaran, M. Yan, K. Gopalan, Tackling memory footprint expansion during

live migration of virtual machines, in: 2024 IEEE 24th International Symposium

on Cluster, Cloud and Internet Computing (CCGrid), 2024, pp. 158–167. https:

//doi.org/10.1109/CCGrid59990.2024.00027

[14] W. Voorsluys, J. Broberg, S. Venugopal, R. Buyya, Cost of virtual machine live migra-

tion in clouds: a performance evaluation, in: M.G. Jaatun, G. Zhao, C. Rong (Eds.),

Cloud Computing, Berlin Heidelberg, Springer, 2009, pp. 254–265.

[15] R.M. Haris, K.M. Khan, A. Nhlabatsi, Live migration of virtual machine memory

content in networked systems, Comput. Netw. 209 (2022). https://doi.org/10.1016/

j.comnet.2022.108898

[16] A. Beloglazov, R. Buyya, Energy efficient resource management in virtualized cloud

data centers, in: Proceedings of the 2010 10th IEEE/ACM International Confer-

ence on Cluster, Cloud and Grid Computing, CCGRID ’10, Washington, DC, USA,

IEEE Computer Society, 2010, pp. 826–831. https://doi.org/10.1109/CCGRID.

2010.46

[17] W. Fang, X. Liang, S. Li, L. Chiaraviglio, N. Xiong, Vmplanner: optimizing virtual ma-

chine placement and traffic flow routing to reduce network power costs in cloud data

centers, Comput. Netw. 57 (1) (2013) 179–196. https://doi.org/10.1016/j.comnet.

2012.09.008

[18] J.W. Jiang, T. Lan, S. Ha, M. Chen, M. Chiang, Joint vm placement and routing

for data center traffic engineering, in: 2012 Proceedings IEEE INFOCOM, 2012, pp.

2876–2880. https://doi.org/10.1109/INFCOM.2012.6195719

[19] L. Liu, H. Wang, X. Liu, X. Jin, W.B. He, Q.B. Wang, Y. Chen, Greencloud: a new

architecture for green data center, in: Proceedings of the 6th International Con-

ference Industry Session on Autonomic Computing and Communications Indus-

try Session, ICAC-INDST ’09, New York, NY, USA, ACM, 2009, pp. 29–38. https:

//doi.org/10.1145/1555312.1555319

[20] J. Xu, J.A.B. Fortes, Multi-objective Virtual Machine Placement in Virtual-

ized Data Center Environments, 2010, pp. 179–188. https://doi.org/10.1109/

GreenCom-CPSCom.2010.137

[21] L.A. Barroso, U. Hölzle, P. Ranganathan, The datacenter as a computer: de-

signing warehouse-scale machines, Synth. Lect. Comput. Arch. 13 (3) (2018)

189.

[22] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield,

Live migration of virtual machines, in: Proceedings of the 2nd Conference on

Symposium on Networked Systems Design & Implementation 2 (2005) 273–286.

NSDI’05, USENIX Association, http://dl.acm.org/citation.cfm?id=1251203.

1251223.

[23] H. Jin, L. Deng, S. Wu, X. Shi, X. Pan, Live virtual machine migration with adap-

tive, memory compression, in: 2009 IEEE International Conference on Cluster

Computing and Workshops, 2009, pp. 1–10. https://doi.org/10.1109/CLUSTR.

2009.5289170

[24] C. Jo, E. Gustafsson, J. Son, B. Egger, Efficient live migration of virtual machines

using shared storage, in: Proceedings of the 9th ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, VEE ’13, New York, NY, USA, ACM,

2013, pp. 41–50. https://doi.org/10.1145/2451512.2451524

[25] C. Jo, B. Egger, Optimizing live migration for virtual desktop clouds, IEEE 5th

International Conference on Cloud Computing Technology and Science 1 (2013)

104–111. https://doi.org/10.1109/CloudCom.2013.21

[26] P. Svärd, B. Hudzia, J. Tordsson, E. Elmroth, Evaluation of delta compression tech-

niques for efficient live migration of large virtual machines, in: Proceedings of the

7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environ-

ments, VEE ’11, New York, NY, USA, ACM, 2011, pp. 111–120. https://doi.org/10.

1145/1952682.1952698

[27] H. Liu, H. Jin, X. Liao, L. Hu, C. Yu, Live migration of virtual machine based on full

system trace and replay, in: Proceedings of the 18th ACM International Symposium

on High Performance Distributed Computing, HPDC ’09, New York, NY, USA, ACM,

2009, pp. 101–110. https://doi.org/10.1145/1551609.1551630

[28] T. Hirofuchi, H. Nakada, S. Itoh, S. Sekiguchi, Reactive consolidation of virtual ma-

chines enabled by postcopy live migration, in: Proceedings of the 5th International

Workshop on Virtualization Technologies in Distributed Computing, VTDC ’11,

New York, NY, USA, ACM, 2011, pp. 11–18. https://doi.org/10.1145/1996121.

1996125

[29] P. Svard, J. Tordsson, B. Hudzia, E. Elmroth, High performance live migration

through dynamic page transfer reordering and compression, in: Proceedings of the

2011 IEEE Third International Conference on Cloud Computing Technology and

Science, CLOUDCOM ’11, Washington, DC, USA, IEEE Computer Society, 2011, pp.

542–548. https://doi.org/10.1109/CloudCom.2011.82

[30] Z. Liu, W. Qu, W. Liu, K. Li, Xen live migration with slowdown scheduling algorithm,

in: Proceedings of the 2010 International Conference on Parallel and Distributed

Computing, Applications and Technologies, PDCAT ’10, Washington, DC, USA, IEEE

Computer Society, 2010, pp. 215–221. https://doi.org/10.1109/PDCAT.2010.88

[31] A. Gupta, S. Namasudra, A novel technique for accelerating live migration

in cloud computing, Autom. Softw. Eng. 29 (2022). https://doi.org/10.1007/

s10515-022-00332-2

[32] J. Li, J. Zhao, Y. Li, L. Cui, B. Li, L. Liu, J. Panneerselvam, imig: toward an adaptive

live migration method for kvm virtual machines, Comput. J. 58 (6) (2014) 1227.

https://doi.org/10.1093/comjnl/bxu065

[33] S. Nathan, U. Bellur, P. Kulkarni, On selecting the right optimizations for virtual

machine migration, in: Proceedings of the12th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments, VEE ’16, New York, NY, USA, ACM,

2016, pp. 37–49. https://doi.org/10.1145/2892242.2892247

[34] P. Svärd, B. Hudzia, S. Walsh, J. Tordsson, E. Elmroth, Principles and performance

characteristics of algorithms for live vm migration, SIGOPS Oper. Syst. Rev. 49 (1)

(2015) 142–155. https://doi.org/10.1145/2723872.2723894

[35] Y. Cho, C. Jo, H. Kim, B. Egger, Towards economical live migration in data cen-

ters, in: Economics of Grids, Clouds, Systems, and Services, GECON ’20, Cham,

Springer International Publishing, 2020, pp. 173–188. https://doi.org/10.1007/

978-3-030-63058-4_15

[36] M.E. Elsaid, H.M. Abbas, C. Meinel, Virtual machines pre-copy live migration cost

modeling and prediction: a survey, Distributed and Parallel Databases, 2022. https:

//doi.org/10.1007/s10619-021-07387-2

[37] S. Soma, S. Rukmini, Virtual machine and container live migration algorithms for

energy optimization of data centre in cloud environment: a research review, in: IoT

Based Control Networks and Intelligent Systems, Springer Nature Singapore, 2023,

pp. 637–647.

[38] C. Jo, Y. Cho, B. Egger, A machine learning approach to live migration modeling,

in: ACM Symposium on Cloud Computing, SoCC’17, 2017. https://doi.org/10.1145/

3127479.3129262

[39] B. Egger, E. Gustafsson, C. Jo, J. Son, Efficiently restoring virtual machines,

Int. J. Parallel Program. 43 (3) (2015) 421–439. https://doi.org/10.1007/

s10766-013-0295-0

[40] M. Fenn, M.A. Murphy, J. Martin, S. Goasguen, An evaluation of kvm for use in

cloud computing, in: Proc. 2nd International Conference on the Virtual Computing

Initiative, NC, USA, 2008.

[41] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.

Pratt, A. Warfield, Xen and the art of virtualization, in: Proceedings of the Nine-

teenth ACM Symposium on Operating Systems Principles, SOSP ’03, New York, NY,

USA, Association for Computing Machinery, 2003, pp. 164–177. https://doi.org/10.

1145/945445.945462

[42] M.R. Hines, K. Gopalan, Post-copy based live virtual machine migration using adap-

tive pre-paging and dynamic self-ballooning, in: ACM SIGPLAN/SIGOPS Interna-

tional Conference on Virtual Execution Environments, VEE ’09, New York, NY, USA,

ACM, 2009, pp. 51–60. Proceedings of the 2009. https://doi.org/10.1145/1508293.

1508301

[43] F. Bellard, Qemu, a fast and portable dynamic translator, USENIX Ann. Tech. Conf.

41 (2005) 46.

[44] Meta, Smaller and faster data comparession with Zstandard, 2016. https://engi-

neering.fb.com/2016/08/31/core-data/smaller-and-faster-data-compression-with-

zstandard/.

[45] A. Koto, K. Kono, H. Yamada, A guideline for selecting live migration policies and

implementations in clouds, in: Proceedings of the 2014 IEEE 6th International Con-

ference on Cloud Computing Technology and Science, CLOUDCOM ’14, Washing-

ton, DC, USA, IEEE Computer Society, 2014, pp. 226–233. https://doi.org/10.1109/

CloudCom.2014.36

[46] S. Nathan, U. Bellur, P. Kulkarni, Towards a comprehensive performance model

of virtual machine live migration, in: Proceedings of the Sixth ACM Symposium

on Cloud Computing, SoCC ’15, New York, NY, USA, ACM, 2015, pp. 288–301.

https://doi.org/10.1145/2806777.2806838

[47] S. Akoush, R. Sohan, A. Rice, A.W. Moore, A. Hopper, Predicting the performance

of virtual machine migration, in: Proceedings of the 2010 IEEE International Sym-

posium on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems, MASCOTS ’10, Washington, DC, USA, IEEE Computer Society, 2010, pp.

37–46. https://doi.org/10.1109/MASCOTS.2010.13

[48] T. He, A.N. Toosi, R. Buyya, Camig: Concurrency-Aware LiveMigrationManagement

of Multiple Virtual Machines in SDN-Enabled Clouds, Technical Report, 2021. https:

//arxiv.org/abs/2111.08942.

[49] A. Belgacem, S. Mahmoudi, M.A. Ferrag, A machine learning model for improv-

ing virtual machine migration in cloud computing, J. Supercomput. 79 (9) (2023)

9486–9508.

[50] R.M. Haris, M. Barhamgi, A. Nhlabatsi, K.M. Khan, Optimizing pre-copy live

virtual machine migration in cloud computing using machine learning-based

prediction model, Computing 106 (2024) 3031–3062. https://doi.org/10.1007/

s00607-024-01318-6

[51] Y. Gong, J. Huang, B. Liu, J. Xu, B. Wu, Y. Zhang, Dynamic resource allocation

for virtual machine migration optimization using machine learning, 2024. https:

//arxiv.org/abs/2403.13619.

[52] C. Reiss, A. Tumanov, G.R. Ganger, R.H. Katz, M.A. Kozuch, Heterogeneity and dy-

namicity of clouds at scale: google trace analysis, in: Proceedings of the Third ACM

Symposium on Cloud Computing, SoCC ’12, ACM 7 (2012) 13. https://doi.org/10.

1145/2391229.2391236

[53] M. Tirmazi, A. Barker, N. Deng, M.E. Haque, Z.G. Qin, S. Hand, M. Harchol-Balter,

J. Wilkes, Borg: the next generation, in: Proceedings of the Fifteenth European Con-

ference on Computer Systems, EuroSys ’20, New York, NY, USA, Association for

Computing Machinery, 2020. https://doi.org/10.1145/3342195.3387517

[54] D. Park, H. Kim, Y. Cho, C. Jo, B. Egger, Can VM live migration improve job through-

put? Evidence from a real world cluster trace, in: Economics of Grids, Clouds, Sys-

tems, and Services, GECON ’21, Cham, Springer International Publishing, 2021, pp.

17–26. https://doi.org/10.1007/978-3-030-92916-9_2

[55] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn. 63 (1)

(2006) 3–42. https://doi.org/10.1007/s10994-006-6226-1

[56] A.J. Smola, B. Schölkopf, A tutorial on support vector regression, Stat.

Comput. 14 (3) (2004) 199–222. https://doi.org/10.1023/B:STCO.0000035301.

49549.88

[57] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Regu-

larization, Optimization, and Beyond, MIT press, 2002. https://doi.org/10.7551/

mitpress/4175.001.0001

[58] E.G. Coffman, Jr, M.R. Garey, D.S. Johnson, Approximation Algorithms for

Bin Packing: A Survey, Approximation algorithms for NP-Hard Problems, 1997.

46–93

https://doi.org/10.1109/CCGrid59990.2024.00027
https://doi.org/10.1109/CCGrid59990.2024.00027
https://doi.org/10.1109/CCGrid59990.2024.00027
https://doi.org/10.1109/CCGrid59990.2024.00027
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0007
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0007
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0007
https://doi.org/10.1016/j.comnet.2022.108898
https://doi.org/10.1016/j.comnet.2022.108898
https://doi.org/10.1016/j.comnet.2022.108898
https://doi.org/10.1016/j.comnet.2022.108898
https://doi.org/10.1109/CCGRID.2010.46
https://doi.org/10.1109/CCGRID.2010.46
https://doi.org/10.1109/CCGRID.2010.46
https://doi.org/10.1109/CCGRID.2010.46
https://doi.org/10.1016/j.comnet.2012.09.008
https://doi.org/10.1016/j.comnet.2012.09.008
https://doi.org/10.1016/j.comnet.2012.09.008
https://doi.org/10.1016/j.comnet.2012.09.008
https://doi.org/10.1109/INFCOM.2012.6195719
https://doi.org/10.1109/INFCOM.2012.6195719
https://doi.org/10.1145/1555312.1555319
https://doi.org/10.1145/1555312.1555319
https://doi.org/10.1145/1555312.1555319
https://doi.org/10.1145/1555312.1555319
https://doi.org/10.1109/GreenCom-CPSCom.2010.137
https://doi.org/10.1109/GreenCom-CPSCom.2010.137
https://doi.org/10.1109/GreenCom-CPSCom.2010.137
https://doi.org/10.1109/GreenCom-CPSCom.2010.137
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0015
http://dl.acm.org/citation.cfm?id=1251203.1251223
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0015
http://dl.acm.org/citation.cfm?id=1251203.1251223
https://doi.org/10.1109/CLUSTR.2009.5289170
https://doi.org/10.1109/CLUSTR.2009.5289170
https://doi.org/10.1109/CLUSTR.2009.5289170
https://doi.org/10.1109/CLUSTR.2009.5289170
https://doi.org/10.1145/2451512.2451524
https://doi.org/10.1145/2451512.2451524
https://doi.org/10.1109/CloudCom.2013.21
https://doi.org/10.1109/CloudCom.2013.21
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1145/1952682.1952698
https://doi.org/10.1145/1551609.1551630
https://doi.org/10.1145/1551609.1551630
https://doi.org/10.1145/1996121.1996125
https://doi.org/10.1145/1996121.1996125
https://doi.org/10.1145/1996121.1996125
https://doi.org/10.1145/1996121.1996125
https://doi.org/10.1109/CloudCom.2011.82
https://doi.org/10.1109/CloudCom.2011.82
https://doi.org/10.1109/PDCAT.2010.88
https://doi.org/10.1109/PDCAT.2010.88
https://doi.org/10.1007/s10515-022-00332-2
https://doi.org/10.1007/s10515-022-00332-2
https://doi.org/10.1007/s10515-022-00332-2
https://doi.org/10.1007/s10515-022-00332-2
https://doi.org/10.1093/comjnl/bxu065
https://doi.org/10.1093/comjnl/bxu065
https://doi.org/10.1145/2892242.2892247
https://doi.org/10.1145/2892242.2892247
https://doi.org/10.1145/2723872.2723894
https://doi.org/10.1145/2723872.2723894
https://doi.org/10.1007/978-3-030-63058-4_15
https://doi.org/10.1007/978-3-030-63058-4_15
https://doi.org/10.1007/978-3-030-63058-4_15
https://doi.org/10.1007/978-3-030-63058-4_15
https://doi.org/10.1007/s10619-021-07387-2
https://doi.org/10.1007/s10619-021-07387-2
https://doi.org/10.1007/s10619-021-07387-2
https://doi.org/10.1007/s10619-021-07387-2
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0030
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0030
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0030
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0030
https://doi.org/10.1145/3127479.3129262
https://doi.org/10.1145/3127479.3129262
https://doi.org/10.1145/3127479.3129262
https://doi.org/10.1145/3127479.3129262
https://doi.org/10.1007/s10766-013-0295-0
https://doi.org/10.1007/s10766-013-0295-0
https://doi.org/10.1007/s10766-013-0295-0
https://doi.org/10.1007/s10766-013-0295-0
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0033
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/945445.945462
https://doi.org/10.1145/1508293.1508301
https://doi.org/10.1145/1508293.1508301
https://doi.org/10.1145/1508293.1508301
https://doi.org/10.1145/1508293.1508301
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0036
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0036
https://engineering.fb.com/2016/08/31/core-data/smaller-and-faster-data-compression-with-zstandard/
https://engineering.fb.com/2016/08/31/core-data/smaller-and-faster-data-compression-with-zstandard/
https://engineering.fb.com/2016/08/31/core-data/smaller-and-faster-data-compression-with-zstandard/
https://doi.org/10.1109/CloudCom.2014.36
https://doi.org/10.1109/CloudCom.2014.36
https://doi.org/10.1109/CloudCom.2014.36
https://doi.org/10.1109/CloudCom.2014.36
https://doi.org/10.1145/2806777.2806838
https://doi.org/10.1145/2806777.2806838
https://doi.org/10.1109/MASCOTS.2010.13
https://doi.org/10.1109/MASCOTS.2010.13
https://arxiv.org/abs/2111.08942
https://arxiv.org/abs/2111.08942
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0040
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0040
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0040
https://doi.org/10.1007/s00607-024-01318-6
https://doi.org/10.1007/s00607-024-01318-6
https://doi.org/10.1007/s00607-024-01318-6
https://doi.org/10.1007/s00607-024-01318-6
https://arxiv.org/abs/2403.13619
https://arxiv.org/abs/2403.13619
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/2391229.2391236
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1145/3342195.3387517
https://doi.org/10.1007/978-3-030-92916-9_2
https://doi.org/10.1007/978-3-030-92916-9_2
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.7551/mitpress/4175.001.0001
https://doi.org/10.7551/mitpress/4175.001.0001
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0048
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0048
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0048


Y. Cho et al.

[59] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation

heuristics for efficient management of data centers for cloud computing, Fut.

Gen. Comput. Syst. 28 (5) (2012) 755–768. https://doi.org/10.1016/j.future.2011.

04.017

[60] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, M.D. Corner,

Memory buddies: exploiting page sharing for smart colocation in virtualized data

centers, in: ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, VEE ’09, ACM, 2009, pp. 31–40. Proceedings of the 2009. https:

//doi.org/10.1145/1508293.1508300

[61] gRPC, 2024. https://grpc.io/.

[62] C. Bienia, S. Kumar, J.P. Singh, K. Li, The parsec benchmark suite: characterization

and architectural implications, in: Proceedings of the 17th International Conference

on Parallel Architectures and Compilation Techniques, 2008, pp. 72–81.

[63] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum,

R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon,

V. Venkatakrishnan, S.K. Weeratunga, The NAS parallel benchmarks-summary and

preliminary results, in: Proceedings of the 1991 ACM/IEEE Conference on Super-

computing, Supercomputing ’91, New York, NY, USA, Association for Computing

Machinery, 1991, pp. 158–165. https://doi.org/10.1145/125826.125925

Youngsu Cho received the B.S degree in Department of Computer Science and Engineer-

ing from Seoul National University of Science and Technology, Seoul, Repbulic of Korea,

in 2015. He is currently pursuing his Ph.D. degree in Computer Science and Engineering

at Seoul National University, where he has been since 2016. Concurrently, he is working

as a Developer at SAP Labs Korea, Seoul, Republic of Korea. Youngsu’s research interests

include cloud computing, machine learning, data center optimization, etc.

Changyeon Jo received a Ph.D. in Computer Science from Seoul National University in

2021 and a BS in Computer Science from Hanyang University ERICA in 2012. Throughout

his Ph.D. studies, he worked on software-based memory disaggregation techniques, per-

formance modeling of VM live migration using machine learning, and efficient VM live

migration techniques. Changyeon is currently with MangoBoost where he is working on

an RMDA-related DPU software stack.

Reza Entezari-Maleki received the B.S. and M.S. degrees from the Iran University of Sci-

ence and Technology, in 2007 and 2009, respectively, and the Ph.D. degree from the Sharif

University of Technology, in 2014, all in computer engineering. He worked at the School

of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran,

as a post-doctoral researcher, from 2015 to 2018. He is currently an assistant professor in

the School of Computer Engineering, Iran University of Science and Technology. His main

research interests are performance/dependability modeling and evaluation of distributed

computing systems.

Jörn Altmann is Professor for Technology Management, Economics, and Policy at the

College of Engineering at Seoul National University. Prior to this, he has been a postdoc

at EECS and ICSI of UC Berkeley, taught computer networks at UC Berkeley, and worked

as a senior scientist at Hewlett-Packard Labs. Dr. Altmann’s research centres on Inter-

net economics with a focus on economic analysis of Internet services and on integrating

economic models into Internet infrastructures.

Bernhard Egger is a professor in the Department of Computer Science and Engineering at

Seoul National University (SNU). He received a combined B.Sc./M.Sc. degree in Computer

Science from the Swiss Federal Institute of Technology Zurich (Eidgenössische Technische

Hochschule Zürich, ETHZ) in 2001 and a Ph.D. in Computer Science from SNU in 2008.

After obtaining his Ph.D., he spent three years as a senior research engineer at the Samsung

Advanced Institute of Technology (SAIT) before rejoining SNU inMarch 2011. His research

focuses on efficient runtimes, compilers, and system software for parallel systems.

https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1145/1508293.1508300
https://doi.org/10.1145/1508293.1508300
https://doi.org/10.1145/1508293.1508300
https://doi.org/10.1145/1508293.1508300
https://grpc.io/
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0051
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0051
http://refhub.elsevier.com/S0167-739X(25)00379-6/sbref0051
https://doi.org/10.1145/125826.125925
https://doi.org/10.1145/125826.125925

	Towards smarter live migration: Minimizing SLO violations and costs
	1 Introduction
	2 Background and related work
	2.1 Live migration
	2.2 Live migration techniques
	2.2.1 Basic transfer algorithms
	2.2.2 Optimizations

	2.3 Live migration metrics
	2.4 Related work

	3 Challenges and opportunities in live migration
	4 Predicting live migration performance
	4.1 Problem formulation
	4.2 Model evaluation and selection
	4.3 Model robustness and adaptability

	5 Framework design and implementation
	5.1 Framework architecture
	5.1.1 Components
	5.1.2 Implementation

	5.2 Migration policy
	5.2.1 Service level objectives
	5.2.2 Policy support
	5.2.3 Migration algorithm selection
	5.2.4 Policy determination guidelines


	6 Evaluation
	6.1 Environment
	6.2 Workloads
	6.3 Maintenance migration
	6.4 Policies for hotspot and consolidation scenarios
	6.5 Hotspot scenario
	6.6 Consolidation scenario
	6.7 Analysis of technique selection
	6.8 Prediction accuracy and SLO violation analysis

	7 Conclusion




