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A B S T R A C T

Smart vehicles have a rising demand for computation resources, and recently vehicular edge computing has
been recognized as an effective solution. Edge servers deployed in roadside units are capable of accomplishing
tasks beyond the capacity which is embedded inside the vehicles. However, the main challenge is to carefully
select the tasks to be offloaded considering the deadlines, and in order to reduce energy consumption, while
delivering a good performance. In this paper, we consider a vehicular edge computing network in which
multiple cars are moving at non-constant speed and produce tasks at each time slot. Then, we propose a
task offloading algorithm, aware of the vehicle’s direction, based on Rainbow, a deep Q-learning algorithm
combining several independent improvements to the deep Q-network algorithm. This is to overcome the
conventional limits and to reach an optimal offloading policy, by effectively incorporating the computation
resources of edge servers to jointly minimize average delay and energy consumption. Real-world traffic data
is used to evaluate the performance of the proposed approach compared to other algorithms, in particular
deep Q-network, double deep Q-network, and deep recurrent Q-network. Results of the experiments show an
average reduction of 18% and 15% in energy consumption and delay, respectively, when using the proposed
Rainbow deep Q-network based algorithm in comparison to the state-of-the-art. Moreover, the stability and
convergence of the learning process have significantly improved by adopting the Rainbow algorithm.
1. Introduction

The future is always pictured with modern and fictional cars which
are more like robots than classic transportation means. This image is
today somehow realized with autonomous vehicles, and we are close
to the futuristic transportation style more than ever. The market of
the Internet of Vehicles (IoV) was estimated to correspond to $96
billion in 2021, and is approximately predicted to grow to $370 billion
in 2028 (FortuneBusinessInsights, 2020). This remarkable investment
justifies the ever-growing research attention shifted toward vehicular
networks. A significant number of advances are achieved every year in
the fields of auto navigation, vehicular augmented reality, autonomous
driving, and intelligent object recognition (Chen et al., 2023; Morra
et al., 2019; Xu et al., 2022). All these new applications are pushing the
available infrastructures to their limits. They require Quality of Service
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(QoS), while at the same time executing complex tasks on massive data
captured by sensors and communicating with the network.

Strict delay constraints are common in the above-mentioned ap-
plications, and this results in high energy consumption. However,
autonomous vehicles are powered by batteries, and therefore, vehi-
cles experience excessive pressure on the onboard resources. In order
to relieve the conflict between application demands and resource-
constrained vehicles, Vehicular Edge Computing (VEC) has emerged
as a promising computing paradigm (Hu et al., 2019; Sun et al., 2019;
Zhang, Guo, Liu, & Zhang, 2019). With the integration of Mobile Edge
Computing (MEC) and vehicular networks, Vehicular Edge Computing
(VEC) supports IoV by enabling the offloading of resource-intensive
tasks onto MEC servers deployed on Road Side Units (RSU) via wireless
networks (Liu et al., 2020). MEC servers can alleviate computation
vailable online 10 March 2024
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pressure on the vehicle’s onboard resources and reduce the processing
delay of these applications by pushing the computation resources in
proximity to vehicles. As a result, task offloading has recently received
increasing attention in VEC (Chen et al., 2022; Zhang et al., 2020; Zhao
et al., 2022). However, due to the unique characteristics of vehicular
networks, especially the high mobility of nodes and dynamic channel
properties, designing an efficient edge-based task offloading scheme is
quite challenging.

There have been many efforts devoted to the task offloading in
VEC to seek solutions to the above issues and meeting the various
performance requirements. Most of them have employed the Q-learning
algorithm, a model-free Reinforcement Learning (RL) method, as a
potential solution to solve offloading problems (Alchalabi et al., 2021;
Jiang et al., 2020). However, they are slow in a huge state space. The
state space for vehicular task offloading environment can be vast and
high-dimensional due to the numerous factors involved. To address is-
sues in Q-learning methods, Deep Q-Network (DQN) algorithms, which
approximate the Q-function using deep neural networks, have emerged
to prove their efficiency in solving offloading decision problems with
huge dimensional state and action spaces, where the agent can adapt
well to complex environments via continuous interaction (Liu et al.,
2019; Xu et al., 2022). However, the major challenge in traditional
DQN algorithms is the trend to overestimation which led to unstable
training and low-quality policy. As an alternative, Double DQN was
proposed (Hasselt et al., 2016), which has two identical neural network
models, where one network is used to select the best action and the
other is used to estimate the value of that action. It could reduce
overestimation by separating the max operation in the target into action
selection and action evaluation (Tan et al., 2022). Deep Recurrent Q-
Network (DRQN) is also practical with Partially-Observable Markov
Decision Process (POMDP) (Hausknecht & Stone, 2015). In DRQN, a
recurrent layer is added after the convolutional part of the original DQN
to handle long term dependencies. Nevertheless, adding a recurrent
layer to a DQN makes DRQN trickier and longer to train compared to
classical DQN.

DQN and its derivations were an important milestone; however,
the research has identified several drawbacks. Consequently, efforts
have been made to propose improvements to DQNs. Yet it is unclear
which of these advancements are indeed complementary, and can be
integrated into a single agent to go beyond the state-of-the-art per-
formance. In this paper, we focus on making efficient task-offloading
decisions for multiple vehicles moving at a non-constant speed along
the road. Vehicles generate computation tasks at each time slot and
RSUs provide computing services for the vehicles moving within the
coverage radius. In order to reach an efficient solution to optimize joint
delay and energy consumption, we design a task-offloading algorithm
that exploits the state-of-the-art DQN variation designated Rainbow.
Rainbow is an integration of six improvements to the DQN algorithm,
namely Double DQN, prioritized experience replay, dueling networks,
multi-step learning, distributional RL, and noisy nets (Hessel et al.,
2018).

The main contributions of this paper are summarized as follows.

• The speed of each vehicle is assumed to be non-constant while
related work have mostly simplified the case to constant speed.

• The speed of the learning process is improved by considering
penalties for wrong offloading decisions. In other words, when
the vehicle is out of the coverage radius of the selected RSU, a
penalty is imposed on the agent.

• The optimization problem for computation offloading to simulta-
neously consider the delay and energy consumption of vehicles is
mathematically formulated.

• The target RSU is specified when the offloading action is sug-
gested. In some related work, it is only decided whether to offload
or process locally.

• The direction of vehicles is taken into account when selecting the
2

RSU to offload tasks.
• The agent makes offloading decisions for all moving vehicles in
the network, while most of the related work assume a single
vehicle.

• Real traffic data, instead of synthetic data, is used to evaluate the
performance of the proposed algorithm. Extensive simulations are
carried out to illustrate the efficiency of the proposed algorithm
compared to the state-of-the-art.

The remaining of this paper is organized as follows. Section 2
discusses the related work in the literature. Section 3 provides back-
ground information about deep Q-learning and Rainbow algorithm.
Section 4 introduces the system model, in terms of communication and
computational models, and formulates the optimization problem. In
Section 5, a Rainbow DQN-based algorithm is proposed to solve task
offloading problem in vehicular networks. Section 6 presents numerical
results of the proposed approach, and finally, the paper is concluded in
Section 7, with also some guidelines for future research.

2. Related work

Vehicular edge computing is a promising computing paradigm that
has attracted considerable attention in recent years. Considering mobile
nodes and the time-varying dynamic networks, obtaining an efficient
offloading strategy is challenging. In this context, task offloading al-
gorithms play a critical role in optimizing resource utilization and
improving system performance. Various approaches have been pre-
sented to solve task-offloading problems in VEC models (Fan et al.,
2022; Jiang et al., 2021; Liu et al., 2022; Ning et al., 2020; Raza et al.,
2020; Song et al., 2022). The high-dimensional state and action space
of task offloading in vehicular networks, coupled with the dynamic
topology of the network, can pose significant challenges in solving
the problem. Due to the complex and dynamic nature of the problem,
heuristic algorithms or conventional optimization techniques may fail
to capture the full range of possible states and actions, leading to
suboptimal performance. As a result, more advanced techniques such
as Deep Reinforcement Learning (DRL), which can effectively handle
high-dimensional state and action spaces, have become increasingly
popular in this field (Alam & Jamalipour, 2022; Jeremiah et al., 2024;
Karimi et al., 2022; Li et al., 2020; Peng et al., 2022; Shi et al.,
2023, 2020). Although DRL has been successful in handling high-
dimensional state and action spaces, conventional DQN algorithms
may still face challenges in solving task offloading problems in ve-
hicular networks, due to the dynamic nature of the network. Several
improvements to DQN algorithms have been proposed to enhance their
performance in these scenarios. These advanced DQN algorithms have
shown promising results in reducing the effects of high state and action
space dimensionality, and effectively handling the dynamic topology of
vehicular networks (Lee et al., 2022; Liao et al., 2023; Tang & Wong,
2022; Tang et al., 2023; Yang et al., 2022; Zhang, Ge, et al., 2019).

Although DQN algorithms have shown desirable results in solving
vehicular task offloading, some other approaches have been proposed
in recent years as well. Game theory has emerged as a promising
solution for task offloading in VEC systems, leveraging its ability to
model strategic interactions among multiple entities and optimizing
system performance under uncertain conditions. They include the
ability to optimize system performance by considering strategic be-
havior, address load balancing concerns by modeling utility-based task
and server choices, and effectively handle uncertainty in dynamic VEC
environments. For example, the authors in Jiang et al. (2021) have
proposed a two-stage game theory iterative algorithm to solve the
problem of load imbalance in VEC systems with RSUs. Game theory
has several limitations when applied to vehicular edge computing. It
introduces complexity in modeling interactions, relies on assumptions
about participant rationality and information, which may not always
hold, and faces coordination challenges in achieving equilibrium. Scal-
ability issues arise with a large number of entities, and privacy concerns
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can deter cooperation when sensitive information is involved. Adapting
to dynamic environments and the computational overhead of solving
complex game models are further challenges. Real-world validation
is crucial, but adds complexity to deployment and evaluation. These
limitations emphasize the need for cautious consideration when using
game theory in VEC scenarios.

Apart from game theory, other heuristic methods have succeeded as
well in partially addressing this issue. Heuristic algorithms have inter-
esting features for vehicular task offloading problems. They are prized
for their simplicity, speed, and scalability, making them well-suited
for real-time decision-making in dynamic vehicular environments with
numerous vehicles, tasks, and edge servers. These algorithms adapt ef-
fectively to changing conditions, require low computational overhead,
and can work in a decentralized manner, enhancing their applicability
in large-scale vehicular networks. Furthermore, heuristics simplify com-
plex problems, may offer robust solutions, and explore diverse solution
possibilities.

The authors in Fan et al. (2022) proposed an iterative algorithm
based on reformulation linearization and generalized benders decompo-
sition methods to obtain the optimal solution, and a heuristic algorithm
to provide a sub-optimal solution to minimize the total task processing
delay through Vehicle to Vehicle (V2V) and Vehicle to Infrastructure
(V2I) communication modes. Partial task offloading algorithms, such as
the one in Raza et al. (2020), are common, as well. An urban scenario
under V2V and V2I communication modes was considered in Raza et al.
(2020), and a partial task offloading algorithm was proposed to reduce
the task execution delay. Semi-definite relaxation is known to be an
effective technique, specially when facing a high number of users and
tasks. This technique was investigated in Liu et al. (2022), where multi-
hop vehicle computation resources were leveraged to minimize joint
response delay and cost. Another attempt to bring heuristics into use
is the online Lyapunov optimization-based multi-decision-making algo-
rithm presented in Ning et al. (2020), where the problem of minimizing
the total network delay was formulated as a mixed integer nonlinear
programming. In order to speed-up the solution, AI-based imitation
learning was proposed with limited training samples. In Song et al.
(2022), an ant colony optimization algorithm was proposed to find the
best solution for task offloading, with a pheromone matrix initialization
based on the base station load and user-base station distance.

Heuristic algorithms, while advantageous in vehicular task offload-
ing problems, also come with disadvantages. One notable drawback is
their tendency to produce suboptimal solutions due to their reliance on
simplifications and rules of thumb rather than rigorous optimization.
This limitation can result in inefficient resource utilization, increased
energy consumption, and longer task execution times. Additionally,
heuristics may struggle to adapt to dynamic and uncertain environ-
ments, making them less suitable for scenarios with rapidly changing
conditions or unexpected events. Furthermore, their lack of optimal-
ity guarantees can hinder performance in critical applications where
precise decision-making is essential, such as autonomous driving or
emergency response systems. Hence, when employing heuristic algo-
rithms, careful consideration of the trade-off between simplicity and
solution quality is paramount in vehicular task offloading contexts.

Due to the high dimensional state–action spaces, and dynamic topol-
ogy changes, most recent work has focused on DRL algorithms. DRL
has emerged as a powerful paradigm for tackling complex decision-
making problems in vehicular task offloading and edge computing.
DRL encompasses both value-based and policy-based approaches, each
offering unique advantages. Value-based DRL, exemplified by DQN,
focuses on estimating the value of taking specific actions in given states,
allowing for optimal action selection. On the other hand, policy-based
DRL, such as Soft Actor Critic (SAC) and Deep Deterministic Policy
Gradient (DDPG), directly learns the policy that maps states to actions,
providing greater flexibility in handling continuous action spaces and
stochastic environments. These DRL techniques excel in capturing the
3

complex dynamics of vehicular networks and enabling adaptive task
offloading decisions. Authors of Karimi et al. (2022) have investigated
the resource allocation problem by considering cooperation between
MEC and a central cloud to guarantee the required response time in a
vehicular environment. They utilized a DRL approach to deal with the
large state space and real-time network state transitions. In Alam and
Jamalipour (2022), a multi-agent DRL-based algorithm was proposed
to solve computation offloading problems while minimizing latency,
energy consumption, and cost. In another study, a shared offloading
strategy was proposed, based on DRL, to solve the offloading problem
considering energy consumption and delay (Peng et al., 2022).

The authors in Shi et al. (2020) have explored task offloading in
Vehicular Fog Computing (VFC) and emphasized the need to motivate
vehicle resource sharing in dynamic environments. Their work focuses
on incorporating factors like mobility, task priority, and service avail-
ability into the task offloading process. To address this, they formulate
the problem as a Markov Decision Process (MDP) and SAC based
DRL algorithm to maximize utility while considering latency. Their
results, as presented in extensive simulations, demonstrate the effec-
tiveness of their proposed scheme compared to traditional approaches.
In Jeremiah et al. (2024), a framework was proposed to enhance
VEC performance by addressing challenges related to vehicle mobility
and network dynamics. It uses Digital Twin (DT) technology to create
virtual network node replicas, enabling real-time condition assessment
and edge node collaboration. The framework optimizes RSUs selection
using channel state information and employs a Non-Orthogonal Mul-
tiple Access (NOMA) protocol for vehicle communication. Its primary
objective is to maximize VEC system computation rates and minimize
the task completion delays through joint optimization of offloading
decisions, subchannel allocation, and RSU association. The MDP model
and Advantage Actor–Critic (A2C) algorithm were applied in Jeremiah
et al. (2024) to solve the optimization problem.

The paper Li et al. (2020) introduces a collaborative edge computing
framework for vehicular networks, aiming to reduce computing service
latency and enhance reliability. It comprises two main components: a
task partition and scheduling algorithm for workload allocation and
task execution scheduling, and an AI-based approach using deep rein-
forcement learning to optimize task offloading, computing, and result
delivery policies. By formulating the problem as a MDP, the authors
employed DDPG to find optimal solutions in dynamic urban trans-
portation networks. The paper Shi et al. (2023) introduces a three-tier
vehicular edge computing system designed to optimize task offloading
decisions, considering factors such as vehicle mobility and discrete
variables. To tackle the complexity of the optimization problem, the
authors proposed the TODM-DDPG algorithm, which shows promise
in enhancing task offloading efficiency in VEC. DRL algorithms offer
advantages in optimizing vehicular task offloading, but they face chal-
lenges and limitations. Computational complexity can hinder real-time
decision-making, and sample inefficiency may pose problems in data-
scarce scenarios. Overestimation bias in value-based DRL and training
instability in policy-based methods are key concerns. Additionally,
traditional DQN requires a large amount of training data, in dynamic
vehicular environments, which can be quite challenging.

Recent advances in the context of DQN algorithms have shown
good potential in solving task offloading problems in VEC systems.
Double DQN is an extension of DQN that addresses overestimation
of action values by using the target network to select actions, which
leads to more stable training and better performance (Tang et al.,
2023). Dueling DQN improves the accuracy of action value estimation
by decomposing it into state value and advantage value, by allowing
for more effective learning of the Q-function (Tang & Wong, 2022).
Prioritized DQN assigns higher priority to more important experi-
ences for replay, which can improve sample efficiency and reduce
training time (Liao et al., 2023). Distributed DQN extends the basic
algorithm to distributed environments, allowing for faster and more
efficient learning (Lee et al., 2022). Noisy DQN introduces random

noise into the network weights, encouraging exploration and improving
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learning (Yang et al., 2022). Multi-step DQN improves the learning
process by taking into account multiple consecutive observations and
rewards, leading to more accurate value estimation and better perfor-
mance (Zhang, Ge, et al., 2019). In summary, the advancements in
DQN have indeed shown great potential for enhancing task offloading
in VEC scenarios. However, it is important to highlight that these
enhancements have typically been developed and evaluated separately
which means there is a need for comprehensive investigations that
integrate various improvements into a unified framework. This holistic
approach could potentially yield even more significant benefits in terms
of performance and efficiency in VEC systems. Such integration and
evaluation of these advanced DQN techniques in a real-world vehicular
environment are essential steps toward achieving the full potential of
these advancements.

To the best of our knowledge, no prior studies have explored the
full potential of integrating recent advancements in DQN to enhance
the optimization and acceleration of task offloading decisions. In this
regard, we propose a novel approach that leverages the Rainbow
algorithm, which is a combination of six state-of-the-art DQN en-
hancements. Our approach aims to minimize the delay and energy
consumption in task offloading decisions while also taking into account
the vehicle’s direction. Through this integration, we aim to demonstrate
the significant benefits of using the Rainbow algorithm for improving
the efficiency and effectiveness of solving task offloading problems in
vehicular networks.

3. Background information

This section provides an overview of deep Q-learning to establish
a foundational understanding for the proposed approach presented in
this paper. Afterward, we focus on the Rainbow algorithm which has
demonstrated significant successes in solving problems in complex en-
vironments. We also emphasize its effectiveness in solving the problem
of task offloading in the vehicular networks.

3.1. Deep Q-learning

Q-learning is a well-known classical RL algorithm that aims to
find the optimal policy by estimating the Q-value of each state–action
pair (Kumar et al., 2018). The Q-value function 𝑄(𝑠𝑡 ,𝑎𝑡) estimates the
expected discounted cumulative reward for each state–action pair. The
Q-learning algorithm learns the optimal Q-value function by iteratively
updating the Q-values based on the Bellman equation,

𝑄(𝑠𝑡 ,𝑎𝑡) = 𝑄(𝑠𝑡 ,𝑎𝑡) + 𝛼
[

𝑟𝑡 + 𝛾 max
𝑎𝑡+1

𝑄
(

𝑠𝑡+1, 𝑎𝑡+1
)

−𝑄
(

𝑠𝑡, 𝑎𝑡
)

]

, (1)

where 𝑠𝑡 is the current state in time step 𝑡, 𝑎𝑡 is the action taken in time
step 𝑡, 𝑟𝑡 is the immediate reward received after taking action 𝑎𝑡 in state
𝑠𝑡, 𝛼 is the learning rate, 𝛾 is the discount factor, 𝑠𝑡+1 is the next state,
and finally, 𝑎𝑡+1 is the action that maximizes the Q-value in the next
state 𝑠𝑡+1.

The main limitation of Q-learning is that it can achieve the optimal
policy only when the state and action spaces are small. With regard
to the continuous state space in our proposed approach, we have
infinite possibilities, and therefore, a huge state space. Consequently,
traditional Q-learning algorithms may not be able to find an optimal
solution. To tackle this challenge, we utilize DQN, which integrates
neural network techniques in Q-learning to replace ordinary neural net-
works and extract high-level features from raw input data (Mnih et al.,
2013). Deep neural network is used to approximate the action values
for a given state 𝑠𝑡, input of the neural network, which can support state
and action spaces with larger dimensions. To avoid overestimation and
stabilize the learning process, DQN uses two neural networks; one is the
main network used to represent the 𝑄 function, denoted as 𝑄

(

𝑠𝑡, 𝑎𝑡|𝜃
)

,
where 𝜃 represents the weight parameter of the main network, and the
other is the target network used to represent 𝑄′ function, denoted as
4
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the 𝑄′ (𝑠𝑡, 𝑎𝑡|𝜃′
)

where 𝜃′ represent the weight parameters of the target
etwork.

In the following, we describe the key components of the DQN
lgorithm, including action selection, experience replay memory, and
QN network training. We discuss how these elements work together

o enable an agent to learn effective policies in a wide range of
nvironments.

• Action selection. The agent needs to balance between exploiting
its current knowledge, i.e., taking the action with the highest Q-
value, and exploring new actions that might lead to even higher
rewards. To do this, the agent uses an exploration strategy called
𝜖-greedy. At each step, the agent chooses an action with the
highest Q-value with probability 1 − 𝜖, the exploitation part, and
selects a random action with probability 𝜖, the exploration part,
based on the current state to avoid reaching the local optimal
point, as shown in Eq. (2).

𝑎𝑡 =

{

argmax𝑎𝑡 𝑄
(

𝑠𝑡, 𝑎𝑡
)

𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖
Randomly choose from action space 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖

(2)

• Experience replay memory. Experience replay memory refers
to a technique used to improve the efficiency of the learning
process by storing and reusing past experiences of an agent in
its interactions with an environment. Each experience typically
consists of the agent’s current state, the action it took, the result-
ing reward, and the next state. During the learning process, the
agent can randomly sample experiences from the replay buffer
and use them to update its Q-values, which estimate the expected
future rewards for taking different actions in different states. By
randomly sampling experiences from the replay buffer, the agent
can break the correlation between consecutive experiences and
reduce the likelihood of getting stuck in local optima. Experience
memory is a powerful technique that has been shown to improve
the efficiency and stability of DQN learning, enabling agents
to learn from past experiences and avoid overfitting to recent
experiences.

• DQN network training. Finally, the DQN network is trained
by minimizing the square temporal difference error between the
target value of the target network and the estimated value of the
main network. Therefore, the loss function is defined as Eq. (3)

𝐿𝑡
(

𝜃𝑡
)

=
(

𝑦𝑡 −𝑄
(

𝑠𝑡, 𝑎𝑡|𝜃𝑡
))2 , (3)

where 𝑦𝑡 is the target value of the target network for time step 𝑡,
and 𝑄

(

𝑠𝑡, 𝑎𝑡|𝜃𝑡
)

is the estimated value of the main network with
parameters 𝜃𝑡. Also 𝑦𝑡 can be defined by Eq. (4).

𝑦𝑡 = 𝑟𝑡 + 𝛾 max𝑄′ (𝑠𝑡+1, 𝑎𝑡+1|𝜃
′
𝑡
)

. (4)

DQN is still facing major decision-making challenges in dynamic
environments, hence since the introduction of DQN, several inde-
pendent improvements have been made by the DRL community.
However, it is not determined which of them can be integrated
to provide the state-of-the-art DQN learner. In our case, we ex-
ploit Rainbow which is an extended DQN that combines several
improvements into a single learner. DRL algorithms like Rainbow
are particularly well-suited for this kind of task offloading prob-
lem, because they can learn to make decisions on complex and
dynamic environments.

.2. Rainbow

In this section, we briefly introduce the improvements of the Rain-
ow algorithm compared to the DQN. For more information about the
ainbow algorithm refer to Hessel et al. (2018), Jäger et al. (2021) and

bando-Ceron and Castro (2021).



Expert Systems With Applications 249 (2024) 123622M.K. Farimani et al.
• Double DQN. One significant challenge in traditional DQNs
is their susceptibility to overestimating action values, a phe-
nomenon that can lead to suboptimal policies, especially in com-
plex environments like vehicular networks. This overestimation
bias can hinder convergence, resulting in suboptimal task offload-
ing decisions and increased time and energy consumption. To
address this challenge, the Double DQN algorithm was introduced
to alleviate overestimation bias arising from estimation errors.
The fundamental concept behind Double DQN is to separate the
action selection and value estimation processes. This is achieved
by employing two distinct networks: the online network, respon-
sible for action selection during the agent’s interactions with
the environment, and the target network, utilized for estimating
target Q-values. While the online network is frequently updated to
adapt to the changing environment, the target network’s weights
are periodically synchronized with those of the online network.
The target network plays a crucial role in computing target
Q-values for the Q-learning update equation. By employing a sep-
arate target network, Double DQN aims to stabilize the training
process and mitigate overestimation bias (due to the maximiza-
tion step in Eq. (4), particularly when dealing with complex tasks
like vehicular task offloading, where precise decision-making is
essential. Therefore, Eq. (4) is revised as follows (Hasselt et al.,
2016; Hessel et al., 2018; Tang et al., 2023):

𝑦𝑡 = 𝑟𝑡 + 𝛾𝑄′ (𝑠𝑡+1, argmax𝑄
(

𝑠𝑡+1, 𝑎𝑡+1|𝜃𝑡
)

|𝜃′𝑡
)

. (5)

• Prioritized experience replay. Prioritized experience replay is
an important technique that enhances the learning process in
DQN algorithms, addressing the issue of inefficient learning from
uniformly sampled experiences. In the traditional DQN approach,
all experiences, consisting of state, action, reward, and next state
tuples, are stored in a replay buffer, and training samples are
drawn randomly from this buffer. However, not all experiences
are equally valuable for learning. Prioritized experience replay
assigns priorities to each experience

(

𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1
)

based on their
potential to improve the agent’s knowledge. Experiences that lead
to unexpected outcomes, large rewards, or experiences that the
agent can learn the most from are given higher priorities. When
sampling experiences during training, the agent prefers those with
higher priorities. This prioritization allows the agent to focus
on the most informative experiences, accelerating the learning
process and making it more sample-efficient (Liao et al., 2023;
Obando-Ceron & Castro, 2021). In vehicular task offloading sce-
narios, prioritized experience replay can be especially beneficial,
as it enables the offloading system to learn from experiences
that are most relevant to improving task offloading decisions
and optimizing resource utilization. By efficiently selecting and
learning from high-priority experiences, the system can adapt to
changing conditions and achieve better overall performance in
vehicular edge computing tasks. With prioritized replay buffer
transitions are sampled with probability 𝑝𝑡 relative to the last
encountered absolute Temporal Difference (TD) error, which is
the difference between the target and the predicted values, as a
measure of the expected learning progress:

𝑝𝑡 ∝
|

|

|

𝑟𝑡 + 𝛾 max𝑄′ (𝑠𝑡+1, 𝑎𝑡+1|𝜃
′
𝑡
)

−𝑄
(

𝑠𝑡, 𝑎𝑡|𝜃𝑡
)

|

|

|

𝜔
, (6)

where 𝜔 is a hyperparameter that influences the form of the
distribution.

• Dueling networks. The Dueling DQN architecture represents a
significant advancement in value-based RL, addressing several
limitations of the traditional DQN. In the traditional DQN, a single
neural network estimates the Q-values for all possible actions
given a state. However, the Dueling DQN architecture introduces
a novel approach by splitting the network into two streams: one
5

stream estimates the value of the current state, while the other
estimates the advantage of each possible action (Jäger et al.,
2021; Tang & Wong, 2022). These streams share a common
convolutional encoder and are combined using a specialized ag-
gregator layer to generate an estimate of the state–action value
function 𝑄. The fusion of these two streams follows a specific
factorization of action values, as expressed by Eq. (7).

𝑄
(

𝑠𝑡+1, 𝑎𝑡+1|𝜃𝑡
)

= 𝑣𝜂
(

𝑓𝜉 (𝑠)
)

+𝑎𝜓
(

𝑓𝜉 (𝑠) , 𝑎
)

−
𝛴𝑎′𝑎𝜓

(

𝑓𝜉 (𝑠) , 𝑎′
)

𝑁𝑎𝑐𝑡𝑖𝑜𝑛𝑠
, (7)

where 𝜉, 𝜂, 𝜓 denote the parameters of the shared encoder
𝑓𝜉 , while 𝑎𝜓 represents the value of choosing a specific ac-
tion at a given state, and 𝑣𝜂 represents the value of the given
state regardless of the action taken, and 𝜃 = {𝜉, 𝜂, 𝜓} is their
concatenation.
The key advantage of the Dueling DQN architecture lies in its
ability to distinguish valuable states from less valuable ones with-
out the need to explicitly calculate the impact of every action in
each state. This separation enables Dueling DQN to provide highly
accurate Q-value estimates for each action within a given state.
This feature becomes particularly critical when numerous actions
exhibit similar values, as the advantage stream allows the agent
to effectively differentiate between them. Moreover, in scenarios
like vehicular networks, there is often no need to compute the
value of each action at every time step, especially when actions
are only relevant when vehicles have tasks to process. To enhance
computational efficiency, it is preferable to focus exploration
efforts on actions in states that are currently relevant.
Dueling DQN’s versatility extends to real-time optimization in
vehicular task offloading scenarios. Training the network with
relevant datasets empowers the agent to learn optimal task alloca-
tion based on the current system state, leading to faster and more
energy-efficient task completion. By employing Dueling DQN in
this context, the agent can provide more accurate estimates of
the value of each possible action, resulting in improved task
offloading decisions.

• Multi-step learning. In traditional DQN algorithms, agents up-
date their Q-values based solely on the immediate reward re-
ceived after taking an action. However, multi-step learning DQN
takes a different approach by allowing agents to receive a se-
quence of rewards and take a sequence of actions before updating
their Q-values. This method involves estimating the expected re-
ward for the next 𝑛 steps, enabling agents to incorporate informa-
tion about future rewards beyond just the immediate one (Hessel
et al., 2018; Zhang, Ge, et al., 2019). To implement this, we
first define the truncated 𝑛-step return from a given state 𝑠𝑡 by
applying Eq. (8).

𝑟(𝑛)𝑡 = 𝛴𝑛−1
𝑘=0𝛾

(𝑘)𝑟𝑘+1. (8)

Subsequently, we can formulate an alternative 𝑦𝑡 for DQN that
utilizes these truncated returns as Eq. (9).

𝑦𝑡 = 𝑟(𝑛)𝑡 + 𝛾 (𝑛) max𝑄′ (𝑠𝑡+1, 𝑎𝑡+1|𝜃
′
𝑡
)

. (9)

This mechanism can expedite the learning process when the value
of 𝑛 is optimally tuned. In the context of vehicular networks,
multi-step learning empowers agents to proactively consider the
future impact of their decisions on system performance. By pre-
dicting the likelihood of future task arrivals and offloading deci-
sions, agents can make choices that minimize energy consumption
and latency over multiple steps. Taking into account multiple
future rewards, agents can learn to make more efficient and effec-
tive decisions in the long run. This improvement in the learning
process not only reduces variance but also enhances efficiency
and robustness to noisy rewards and environmental stochasticity.

• Distributional reinforcement learning (Distributional RL).
Traditional DQN algorithms predict the expected return reward

as a scalar value to determine the optimal action in each state.
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However, this approach has limitations in highly dynamic envi-
ronments, such as vehicular networks, where multiple possible
outcomes exist for each action. To address this challenge, Distri-
butional RL has been proposed to learn the entire distribution of
the expected return, which can gain more insights and knowledge
for the agent, leading to a much faster and more stable learning
process (Jäger et al., 2021; Lee et al., 2022). This approach
enables the agent to consider multiple possibilities effectively,
which results in more informed and robust decision-making in
the face of uncertainty.
This technique introduces a novel approach by learning to ap-
proximate the distribution of returns, referred to as 𝑍, instead of
the traditional 𝑄 action value function in Q-Learning. In essence,
𝑍 is a mapping that associates state–action pairs with distri-
butions over returns, known as value distributions. The crucial
insight here is that these return distributions must adhere to a
distributional variant of Bellman’s equation. In order to model
𝑍, a discrete distribution is employed, defined by a set of atoms
denoted as 𝑧. These atoms are derived from a finite range of
values between 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 and are parameterized as Eq. (10):

𝑧𝑖 = 𝑣𝑚𝑖𝑛 + (𝑖 − 1)
𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛
𝑁𝑎𝑡𝑜𝑚𝑠 − 1

, 𝑖 ∈ 1, 2,… , 𝑁𝑎𝑡𝑜𝑚𝑠, (10)

where 𝑁𝑎𝑡𝑜𝑚𝑠 represents the number of atoms and 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥
specify the minimum and maximum values of the distribution,
respectively. Different combinations of these parameters yield
distinct return distributions. The probabilities of the atoms are
determined by a model 𝜃, resulting in the sampling probability 𝑝𝑖
obtained by Eq. (11).

𝑝𝑖(𝑠, 𝑎) =
𝑒𝜃𝑖(𝑠,𝑎)

𝛴𝑗𝜃𝑗 (𝑠, 𝑎)
. (11)

The primary objective is to learn 𝜃 for effectively approximating
the true distribution of returns, denoted as 𝑑𝑡 =

(

𝑧, 𝑝
(

𝑠𝑡, 𝑎𝑡|𝜃𝑡
))

,
based on the support vector and associated probabilities. This
approach enables the development of a distributional variant
of Q-Learning. It begins by constructing a new support for the
target distribution, and then minimizing the Kullback–Leibler
divergence (𝐷𝐾𝐿), a distance metric quantifying the difference
between the distribution 𝑑𝑡 and the target distribution 𝑑′𝑡 ≡
(

𝑟𝑡 + 𝛾𝑧, 𝑝
(

𝑠𝑡+1, �̄�∗𝑡+1|𝜃
′
𝑡

))

, according to Eq. (12).

𝐷𝐾𝐿
(

𝛷𝑧𝑑
′
𝑡∥𝑑𝑡

)

, (12)

where, 𝛷𝑧 represents the L2-projection of the target distribution
onto 𝑧, and �̄�∗𝑡+1 is the greedy action concerning the mean action
values 𝑄′ (𝑠𝑡+1, 𝑎|𝜃′𝑡

)

= 𝑧𝑡𝑝
(

𝑠𝑡+1, 𝑎|𝜃𝑡
)

in state 𝑠𝑡+1. Overall, this
distributional approach employs a neural network representation
with 𝑁𝑎𝑡𝑜𝑚𝑠 ×𝑁𝑎𝑐𝑡𝑖𝑜𝑛𝑠 outputs, followed by a softmax operation to
ensure proper normalization of the distribution.

• Noisy nets. One of the primary challenges in traditional DQN
is the exploration limit imposed by the 𝜖-greedy technique. This
technique requires the execution of numerous actions to col-
lect initial samples for training the network. In highly dynamic
and complex vehicular networks, the agent must explore various
offloading strategies to identify the optimal one. Additionally,
the agent needs to learn how to predict and control unknown
and often stochastic environments. To address this challenge,
a variant of DQN called noisy nets has been proposed, which
incorporates exploration by introducing noise to the network’s
parameters (Obando-Ceron & Castro, 2021; Yang et al., 2022).
Noisy Nets introduce a unique layer known as a noisy linear layer
which combines both a deterministic and a noisy component. This
layer is defined as Eq. (13):

𝑦 = (𝑏 +𝑤𝑥) +
(

𝑏𝑛𝑜𝑖𝑠𝑦 ⊙ 𝜖
𝑏 +

(

𝑤𝑛𝑜𝑖𝑠𝑦 ⊙ 𝜖
𝜔) 𝑥

)

, (13)

where 𝜖𝑏 and 𝜖𝜔 are random variables, and ⊙ denotes the element-
6

wise multiplication. This noisy layer is utilized as a replacement
Table 1
Key notations used in the problem formulation.

Notation Description

𝑀 Number of RSUs
𝑟𝑟𝑠𝑢𝑗 Communication coverage radius of 𝑅𝑆𝑈𝑗
𝑁 Number of Vehicles
𝐶𝑘,𝑖 Number of CPU cycles required to complete the 𝑡𝑎𝑠𝑘𝑖 generated by

𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘
𝑎𝑘,𝑖 Data size of 𝑡𝑎𝑠𝑘𝑖 generated by 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘
𝑑𝑘,𝑖 Deadline of 𝑡𝑎𝑠𝑘𝑖 generated by 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘
𝑥𝑗𝑘,𝑖 Binary offloading decision variable
𝐿𝑘 Effective switched capacitance coefficient of 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘

for a standard linear layer expressed as 𝑦 = 𝑏 + 𝑤𝑥. Over
time, as the network undergoes training, it learns to effectively
disregard the noisy component. The key idea is to encourage the
agent to explore more by making the Q-values less deterministic,
and hence less prone to overfitting. Noisy DQN can facilitate
exploration and prevent the agent from overfitting to its past ex-
periences, resulting in better performance and faster convergence
to the optimal solution.

The integration of the Rainbow algorithm into our work signifi-
antly improves training stability and convergence. Rainbow success-
ully counteracts overestimation bias, enhances training data utilization
hrough prioritized experience replay, and refines action value estima-
ion using the Dueling DQN approach. It effectively handles the issue
f delayed rewards through multi-step learning and fosters exploration
ith the inclusion of noisy nets. These collective enhancements lead

o greater stability in convergence and the development of superior
olicies, rendering Rainbow a robust option for complex tasks such as
ehicular task offloading.

. System modeling and problem formulation

A detailed look into the target system and assumptions is essential
efore describing the proposed approach. In this section, each aspect
f the system, namely network, communication, and computation, is
odeled with parameters and variables that are directly or indirectly

elated to the time and energy consumption, to avoid complexity and
t the same time increase the suitability of the solution. Finally, the
roblem is formulated to optimize the time and energy consumption of
he task offloading scheme in a vehicle. We provide an explanation of
he notation and symbols used in the problem formulation, as summa-
ized in Table 1. Moreover, Fig. 1 provides a visual representation of
he vehicular network, highlighting the communication radius and the
nteractions between vehicles and RSUs.

.1. Network model

We consider a vehicular network consisting a road where 𝑀 RSUs,
enoted as a set 𝑅 = {1, 2,… ,𝑀}, with specific communication cover-
ge radius 𝑟𝑟𝑠𝑢𝑗 , 1 ≤ 𝑗 ≤ 𝑀 , are equidistantly distributed. Each RSU is
quipped with an MEC server which provides computation capability
or vehicles in adjacency via the wireless channel. It is assumed that
ll moving vehicles are always within the range of at least one RSU.
ehicles, denoted as a set 𝑉 = {1, 2,… , 𝑁}, where 𝑁 is the total

number of vehicles, are moving along the road at varying speeds
generating indivisible compute-intensive tasks at each time slot. Each
task of vehicle 𝑘, 1 ≤ 𝑘 ≤ 𝑁 , is modeled as 𝑇𝑘,𝑖 = {𝑐𝑘,𝑖, 𝑎𝑘,𝑖, 𝑑𝑘,𝑖},
where 𝑐𝑘,𝑖 stands for the number of CPU cycles required to complete
the task 𝑖, 𝑎𝑘,𝑖 denotes the input data size, and 𝑑𝑘,𝑖 is the maximum
acceptable time to fulfill the task from the moment task 𝑖 is allocated,
as represented in Table 1. Produced tasks are either processed locally
or offloaded to an RSU within the communication range via a wireless

𝑗
channel. Let 𝑥𝑘,𝑖 ∈ {0, 1} denote the binary offloading decision variable,
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Fig. 1. An abstract representation of a vehicular network.
where 𝑥0𝑘,𝑖 = 1 means that the computation task 𝑖 of vehicle 𝑘 should
be processed locally, and 𝑥𝑗𝑘,𝑖 = 1 means that vehicle 𝑘 will offload task
𝑖 to the RSU 𝑗.

4.2. Communication model

When 𝑥𝑗𝑘,𝑖 = 1, the computation task will be offloaded to the RSU
𝑗 because vehicle 𝑘 cannot meet the low-latency demand of the task 𝑖,
due to the lack of necessary computing resources. We assume that there
is one mode of communication in the vehicular network, i.e., V2I, and
each vehicle communicates with RSUs through a direct wireless link.
According to the Shannon formula (Li et al., 2021; Mao et al., 2017),
the data transmission rate between vehicle 𝑘 and RSU 𝑗 is calculated
according to Eq. (14)

𝑡𝑟𝑘,𝑗 = 𝐵log2

⎛

⎜

⎜

⎜

⎝

|ℎ|2𝑝𝑡𝑟,𝑘

𝜎
(

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘𝑗
)�̄�

⎞

⎟

⎟

⎟

⎠

, (14)

where 𝐵 denotes channel bandwidth, ℎ is the channel fading coeffi-
cient, 𝑝𝑡𝑟,𝑘 stands for the transmission power of vehicle 𝑘, 𝜎 represents
the power of Gaussian white noise, �̄� denotes path loss exponent, and
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘𝑗 is the distance between vehicle 𝑘 and RSU 𝑗. This distance
can be expressed by Eq. (15)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘𝑗 =
√

(𝑥𝑘 − 𝑥𝑗 )2 + (𝑦𝑘 − 𝑦𝑗 )2, (15)

where 𝑥𝑘 and 𝑦𝑘 denote the coordinates of vehicle 𝑘 while 𝑥𝑗 and 𝑦𝑗
denote the coordinates of RSU 𝑗. The time and energy consumed to
transmit task 𝑖 of vehicle 𝑘 to RSU 𝑗 are computed using Eqs. (16) and
(17), respectively.

𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑚,𝑗𝑘,𝑖 =
𝑎𝑘,𝑖
𝑡𝑟𝑘,𝑗

, (16)

𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑚,𝑗𝑘,𝑖 = 𝑝𝑡𝑟,𝑘.𝑇 𝑖𝑚𝑒
𝑐𝑜𝑚𝑚,𝑖
𝑘,𝑗 . (17)

4.3. Computation model

In our proposed computation offloading model, the task can be
either accomplished by the vehicle locally or executed by one of the
RSUs in proximity, so in the following, we discus both of these models.

4.3.1. Local computing
For 𝑥0𝑘,𝑖 = 1, computation task will be processed locally on vehicle’s

own resources. The time consumed to process the task 𝑖 by the vehicle
𝑘 can be calculated by Eq. (18)

𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑘,𝑖 =
𝑐𝑘,𝑖
𝑣𝑒ℎ𝑖𝑐𝑙𝑒 , (18)
7

𝑓𝑘
where 𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘 denotes the computation capability of the vehicle 𝑘
(in CPU cycles per second). The corresponding amount of energy
consumption for computing is expressed as Eq. (19)

𝐸𝑛𝑒𝑟𝑔𝑦𝑙𝑜𝑐𝑘,𝑖 = 𝑝𝑘𝑇 𝑖𝑚𝑒
𝑙𝑜𝑐
𝑘,𝑖 , (19)

where 𝑝𝑘 represents the local computation power of the vehicle 𝑘 and
is formulated by Eq. (20)

𝑝𝑘 = 𝐿𝑘
(

𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘
)3, (20)

where 𝐿𝑘 represents the effective switched capacitance coefficient de-
pending on the chip architecture in the vehicle 𝑘 (Mao et al., 2016).

4.3.2. Edge computing
When the computation task is hard to be processed locally under

the time constraints, the vehicle transmits the information to one of
the adjacent RSUs. After fulfilling the task computation, the result is
returned back to the vehicle. In vehicular edge computing scenarios,
the decision to omit the energy and time costs associated with transmit-
ting results back from RSUs to vehicles is justified by the small size of
the results and the high downlink rates typically available in RSUs (He
et al., 2018; Zhao et al., 2017). The total time for executing task 𝑖 of
the vehicle 𝑘 on the RSU 𝑗 is computed by Eq. (21)

𝑇 𝑖𝑚𝑒𝑒𝑑𝑔𝑒,𝑗𝑘,𝑖 =
𝑐𝑘,𝑖
𝑓 𝑟𝑠𝑢𝑗

, (21)

where 𝑓 𝑟𝑠𝑢𝑗 denotes the computation capability of the RSU 𝑗 (in CPU
cycles per second).

While the RSU is processing the task, the vehicle should wait until
the result gets prepared and returned back. As our primary objective
revolves around reducing vehicle energy consumption, we meticulously
account for the energy consumption incurred by vehicles while waiting
for RSUs to complete task computation. During this time period, we as-
sume that the vehicle is in standby mode and the power consumption of
this mode is denoted as 𝑝𝑖𝑑𝑙𝑒,𝑘. The corresponding energy consumption
of the vehicle 𝑘 is:

𝐸𝑛𝑒𝑟𝑔𝑦𝑒𝑑𝑔𝑒,𝑗𝑘,𝑖 = 𝑝𝑖𝑑𝑙𝑒,𝑘𝑇 𝑖𝑚𝑒
𝑒𝑑𝑔𝑒,𝑗
𝑘,𝑖 . (22)

4.4. Problem formulation

We formulate the optimization problem, with the aim of jointly
minimizing the total delay and energy for all vehicles moving within
the network, by making offloading decisions for each vehicle. In this
paper, we assume that all MEC servers have equal computation re-
sources evenly shared between all vehicles in the network. Total time
and energy consumed to process task 𝑖 of vehicle 𝑘 can be attained
by Eqs. (23) and (24), respectively.

𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑝 = 𝑇 𝑖𝑚𝑒𝑙𝑜𝑐𝑥0 + 𝛴𝑀 𝑇 𝑖𝑚𝑒𝑒𝑑𝑔𝑒,𝑗𝑥𝑗 , (23)
𝑘,𝑖 𝑘,𝑖 𝑘,𝑖 𝑗=1 𝑘,𝑖 𝑘,𝑖
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𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑝𝑘,𝑖 = 𝐸𝑛𝑒𝑟𝑔𝑦𝑙𝑜𝑐𝑘,𝑖 𝑥
0
𝑘,𝑖 + 𝛴

𝑀
𝑗=1𝐸𝑛𝑒𝑟𝑔𝑦

𝑒𝑑𝑔𝑒,𝑗
𝑘,𝑖 𝑥𝑗𝑘,𝑖. (24)

Total time and energy consumed to transmit task 𝑖 of vehicle 𝑘 can
be attained using Eqs. (25) and (26), respectively.

𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑚𝑘,𝑖 = 𝛴𝑀
𝑗=1𝑇 𝑖𝑚𝑒

𝑐𝑜𝑚𝑚,𝑗
𝑘,𝑖 𝑥𝑗𝑘,𝑖, (25)

𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑚𝑘,𝑖 = 𝛴𝑀
𝑗=1𝐸𝑛𝑒𝑟𝑔𝑦

𝑐𝑜𝑚𝑚,𝑗
𝑘,𝑖 𝑥𝑗𝑘,𝑖. (26)

Considering the communication and computation models intro-
uced in Sections 4.2 and 4.3, the total cost imposed on each vehicle
s calculated by Eq. (27)

𝑜𝑠𝑡𝑘 = 𝛴𝐼
𝑖=1

(

𝛼𝑘
(

𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑝𝑘,𝑖 + 𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑚𝑘,𝑖

)

+ 𝛽𝑘
(

𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑝𝑘,𝑖 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑚𝑘,𝑖

)

+ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑘,𝑖
)

,
(27)

here 𝐼 is the total number of tasks generated by vehicle 𝑘, and 𝛼𝑘,
𝛽𝑘 ∈ [0, 1], under constraint 𝛼𝑘 + 𝛽𝑘 = 1, are weighting parameters
expressing the importance of delay and energy consumption while
making decision for each vehicle, respectively. It is worth noting that
all operands in the cost formula of Eq. (27) have been normalized using
the min–max method. Normalization is a crucial step in our proposed
approach, as it ensures that all operands are on the same scale and have
a similar impact on the final result. By using the min–max method,
we can ensure that all operands are scaled to a range between 0 and
1, making them easier to compare and combine. We also consider a
penalty for situations where a wrong offloading decision is made for
a task, which accrued when the distance between the selected RSU
and the vehicle is more than RSU’s communication coverage radius.
The penalty makes the agent learn which nodes to offload tasks to.
Consequently, we define the penalty as the maximum cost that can be
imposed to the vehicle by offloading decisions as follows in Eqs. (28)
and (32).

𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑝𝑚𝑎𝑥 =
max𝑘,𝑖

(

𝑐𝑘,𝑖
)

min𝑗
(

𝑓 𝑟𝑠𝑢𝑗

) , (28)

𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑝𝑚𝑎𝑥 = 𝑝𝑖𝑑𝑙𝑒𝑇 𝑖𝑚𝑒
𝑐𝑜𝑚𝑝
𝑚𝑎𝑥 , (29)

𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑚𝑚𝑎𝑥 =
max𝑘,𝑖

(

𝑎𝑘,𝑖
)

min𝑘,𝑗
(

𝑡𝑟𝑘,𝑗
) , (30)

𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑚𝑚𝑎𝑥 = 𝑝𝑡𝑟𝑇 𝑖𝑚𝑒
𝑐𝑜𝑚𝑚
𝑚𝑎𝑥 , (31)

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑘,𝑖 =

⎧

⎪

⎨

⎪

⎩

0 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘𝑗 ≤ 𝑟𝑟𝑠𝑢𝑗
𝛼𝑘

(

𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑝𝑚𝑎𝑥 + 𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑚𝑚𝑎𝑥
)

+
𝛽𝑘

(

𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑝𝑚𝑎𝑥 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑚𝑚𝑎𝑥
)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘𝑗 > 𝑟
𝑟𝑠𝑢
𝑗

(32)

For each task 𝑖 generated by vehicle 𝑘, for which a wrong offload-
ing decision is made, 𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑝𝑚𝑎𝑥 and 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑝𝑚𝑎𝑥 denote the maximum
possible delay and energy consumption to process the task in remote
processing mode, respectively. Furthermore, 𝑇 𝑖𝑚𝑒𝑐𝑜𝑚𝑚𝑚𝑎𝑥 and 𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑚𝑚𝑎𝑥
represent the maximum possible delay and energy consumption to
transfer the task data to the RSUs, respectively. With the above cost
model, we formulate the computation offloading as an optimization
problem with two constraints that aims to minimize the weighted cost
of the system in terms of delay and energy as Eq. (33)

min
𝑥
𝛴𝑁
𝑘=1𝐶𝑜𝑠𝑡𝑘

𝛴𝑀
𝑗=1𝑥

𝑗
𝑘,𝑖 = 1 𝑐1

𝑥𝑗𝑘,𝑖 ∈ {0, 1} 𝑐2,

(33)

where 𝑐1 denotes constraint on offloading decisions and guarantees
that each computation task can be processed only once. This constraint
ensures that tasks are processed without duplication or unnecessary
redundancy. Moreover, 𝑐2 denotes that offloading decision variable is
8

inary.
In order to solve this optimization problem, it is necessary to find
optimal values for decision variables 𝑥𝑗𝑘,𝑖. Since offloading decision
variables are binary, the optimization problem is not convex. Moreover,
we assume a realistic environment where the state of the network
dynamically changes. Consequently, the operator needs to collect a
large amount of system state information and make the global decision
on offloading operation based on the current network’s state. Therefore,
we apply Rainbow to solve this problem in the following section.

5. Proposed algorithm

A mapping from task offloading decisions in a vehicular network
into a DRL formulation includes some key elements. A state space,
an action space, and a reward function are necessary for complete
mapping. This section starts with the characteristics of these elements
and proposes a Rainbow DQN-based algorithm afterward to solve the
task offloading problem in a dynamic vehicular network.

5.1. Definition of the state and action spaces, and reward function

At each time slot 𝑡, the agent reads important parameter assign-
ents, namely, the state definition. One of the key steps of learning

lgorithms is to find an appropriate representation of the state space.
iven our goal of making decisions for all vehicles, it does introduce
omplexity to the algorithm. We try to simplify the state space by
oncentrating on the critical factors essential for decision-making. This
trategic simplification ensures that our algorithm remains robust even
n complex scenarios.

The most intuitive parameter is the distance from the vehicle to each
f the RSUs. Moreover, the angle with which the vehicle is deviating
rom each of the RSUs is also included here, in the state definition, as
t is important for the agent to learn how likely is for the vehicle to get
loser or further away from the RSU in the near future. We assume
hat the offloading decisions depend on the distance and angle of
ovement of each vehicles with all RSUs in the network. Incorporating

hese parameters into the state space enables us to capture the relative
ynamics of vehicles’ positions and orientations, which play a crucial
ole in anticipating and responding to varying speeds.

The state space is defined as 𝑠𝑡 = {𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘𝑗,𝑡, 𝛺
𝑘
𝑗,𝑡, 1 ≤ 𝑗 ≤ 𝑀, 1 ≤

≤ 𝑁} in 𝑡th time slot, where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘𝑗 represents the distance
etween 𝑘th vehicle and 𝑗th RSU and 𝛺𝑘

𝑗,𝑡 represents the angle of
he 𝑘th vehicle’s direction with regard to the 𝑗th RSU. By quantifying
he angles between vehicles and RSUs, our algorithm gains a detailed
nderstanding of the orientation of each vehicle in relation to the
vailable offloading options. This fine-grained spatial awareness allows
he proposed algorithm to intelligently distribute tasks based on not just
roximity, but also the direction from which vehicles approach RSUs.

In order to determine which roadside unit should be selected for
ffloading, we employed a vector-based approach that accounts for
oth the vehicle’s movement direction relative to the east direction
nd the position of the RSUs. To do so, we first transform the angle
f the vehicle’s movement to a two-dimensional vector using Eq. (34),
here 𝑎𝑛𝑔𝑙𝑒𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘 shows the clockwise angle of vehicle 𝑘 from the east
irection, expressed in radians
[

𝑥𝑎𝑛𝑔𝑙𝑒,𝑘, 𝑦𝑎𝑛𝑔𝑙𝑒,𝑘
]

=
[

− sin
(

𝑎𝑛𝑔𝑙𝑒𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘
)

, cos
(

𝑎𝑛𝑔𝑙𝑒𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘
)]

, (34)

here
[

𝑥𝑎𝑛𝑔𝑙𝑒,𝑘, 𝑦𝑎𝑛𝑔𝑙𝑒,𝑘
]

is related to the direction vector of the 𝑘th
ehicle, shown by the green vector in Fig. 2. In the next step, the
istance vector from the vehicle to the RSU, shown by the red vector
n Fig. 2, can be computed as Eq. (35)
[

𝑥𝑅𝑆𝑈,𝑗 , 𝑦𝑅𝑆𝑈,𝑗
]

=
[

𝑥 − 𝑥 , 𝑦 − 𝑦
]

, (35)
𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘 𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘 𝑗 𝑘 𝑗 𝑘
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Fig. 2. Calculus of the angle between the vehicle’s movement vector and the distance vector.
where
[

𝑥𝑅𝑆𝑈,𝑗𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘, 𝑦
𝑅𝑆𝑈,𝑗
𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘

]

is the distance vector of the 𝑘th vehicle to the
𝑗th RSU. Finally, the angle between the vehicle direction vector and the
distance vector can be computed by Eq. (36).

𝑎𝑛𝑔𝑙𝑒𝑅𝑆𝑈,𝑗𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘 = cos−1

⎛

⎜

⎜

⎜

⎜

⎝

𝑥𝑎𝑛𝑔𝑙𝑒,𝑘 ⋅ 𝑥
𝑅𝑆𝑈,𝑗
𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘 + 𝑦𝑎𝑛𝑔𝑙𝑒,𝑘 ⋅ 𝑦

𝑅𝑆𝑈,𝑗
𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘

√

𝑥2𝑎𝑛𝑔𝑙𝑒,𝑘 + 𝑦
2
𝑎𝑛𝑔𝑙𝑒,𝑘

√

𝑥𝑅𝑆𝑈,𝑗𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘
2
+ 𝑦𝑅𝑆𝑈,𝑗𝑣𝑒ℎ𝑖𝑐𝑙𝑒,𝑘

2

⎞

⎟

⎟

⎟

⎟

⎠

. (36)

In time slot 𝑡, and state space 𝑠𝑡, the agent takes an action in
the action space. To support the computational requirements of the
Rainbow algorithm for vehicular task offloading, we propose utiliz-
ing an RSU among all, as the agent, due to its superior computa-
tion capabilities compared to vehicles. In the VEC network considered
herein, the agent needs to decide whether to process a task locally
or to offload it to an RSU. Hence, the action space is defined as
𝑎𝑡 = {

(

𝑥𝑗𝑘,𝑖
)

𝑡
|𝑘 ∈ 𝑁, 𝑗 ∈𝑀, 𝑖 ∈ 𝐼}. It is worth mentioning that in con-

ventional offloading decision scenarios, the typical approach is binary,
involving a straightforward choice between offloading tasks to an RSU
or conducting local processing. While this binary method simplifies
decision-making, it can sometimes fall short in terms of precision
and may not fully exploit the potential advantages of offloading. Our
algorithm introduces a novel approach by locating the target RSU,
enabling us to make nuanced offloading decisions based on unique RSU
characteristics, including factors like distance and angle. This context-
aware strategy empowers us to intelligently distribute tasks to the most
suitable RSU in real-time, which results in improved resource utiliza-
tion, shorter task processing durations, and overall system performance
enhancements.

The reward function is defined to address the objective of the
optimization problem. Our objective is to minimize total delay and
energy consumption for all vehicles in the network, while the goal of
the agent is to achieve the maximum reward. Therefore, the reward
function should negatively correlate with the objective function. In
our reward formulation, we take into account the concept of task
failure, which helps us incorporate deadlines into the decision-making
process. When a task’s processing time exceeds its specified deadline,
we consider it a failed task. This failure is reflected in the reward
function to guide the agent toward making decisions that prioritize
timely task completion, aligning with our goal of minimizing delays
and energy consumption for all vehicles. The agent gains a reward 𝑟𝑡
at the 𝑡th time slot, by taking the action 𝑎𝑡 when in the state 𝑠𝑡, in order
to maximize long-term cumulative reward. To this end, we define the
reward function as Eq. (37).

𝑟𝑡 =

(

𝑛𝑡𝑎𝑠𝑘𝑠 − 𝑛𝑓𝑎𝑖𝑙𝑒𝑑
)

𝑁 , (37)
9

𝛴𝑘=1𝐶𝑜𝑠𝑡𝑘
where 𝑛𝑡𝑎𝑠𝑘𝑠 denotes the total number of tasks generated in 𝑡th time slot,
while 𝑛𝑓𝑎𝑖𝑙𝑒𝑑 denotes the total number of tasks failed due to the longer
execution time than their deadlines. By employing a global reward
mechanism, we incentivize vehicles to prioritize decisions that enhance
the overall system’s performance, even if it does not always result in
reduced costs for individual vehicles in every particular circumstance.
The primary aim is to enhance network-wide efficiency and optimize
the utilization of resources, which closely aligns with the objectives of
VEC. While this strategy may not ensure cost savings for each vehicle
in every scenario, it results in more efficient and collaborative task
offloading choices that resonate with the broader objectives of VEC
environments.

Based on the discussion given in Sections 3 and 4, and the for-
mulation above, we design the task offloading Algorithm 1 based on
Rainbow. In the first step, we initialize the replay memory, the number
of time slots and episodes, the main network, and the target network
(line 1). Then, all generated tasks by vehicles are stored to process (line
4). The next part of the algorithm is devoted to select the best action
using the 𝜖-greedy technique (line 5). After the action is accomplished,
the agent observes a new state and reward, and the tuple

(

𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1
)

is stored as a transition in replay memory in order to train networks
(line 6). Then, the agent samples some of the data as a batch from
experience replay memory based on their computed complexity to train
networks (line 7). The target value 𝑦𝑖 is calculated for each transition
(line 9). The algorithm minimizes the loss function 𝐿𝑡

(

𝜃𝑡
)

by updating
the parameters of the main DQN network, 𝜃𝑡 (line 10). For a fixed
number of time slots, the algorithm updates the parameters of the target
network, 𝜃′𝑡 , to match the current parameters of the main DQN network,
𝜃𝑡 (line 11).

6. Performance evaluation

In this section, the performance of the proposed algorithm is eval-
uated through a simulation of a real traffic data. For the sake of
comparison, various DQN-based algorithms are also implemented and
simulated to verify the suitability and superiority of the Rainbow
algorithm.

6.1. Experimental settings

Simulations were conducted in a real urban scenario, considering
two distinct time periods: from 7:00 a.m. to 9:00 a.m. and from
5:00 p.m. to 7:00 p.m. These time slots were chosen to encompass
different traffic conditions and scenarios, providing a comprehensive
assessment of the proposed algorithms’ performance. The simulations



Expert Systems With Applications 249 (2024) 123622M.K. Farimani et al.
Algorithm 1: Rainbow DQN-based algorithm
Input:

Initial parameters of the main DQN network and the target network,
The replay memory D.

1. for episode = 1 to 𝐸 do
2. Initialize state 𝑠1
3. for t = 1 to 𝑇 do
4. Store tasks resulted from the application decomposition, produced by vehicles
5. Choose action 𝑎𝑡 based on the 𝜖-greedy policy
6. Carry out action 𝑎𝑡, and observe the new state 𝑠𝑡+1 and 𝑟𝑡
7. Calculate complexity of transitions and extract a batch of 𝑖 transitions from the memory 𝐷⟨𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1⟩

8. for all
(

𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1
)

in 𝐷 do
9. Calculate the target value 𝑦𝑖

10. Minimize loss function 𝐿𝑡
(

𝜃𝑡
)

, by updating 𝜃𝑡
11. Update 𝜃′𝑡 with 𝜃𝑡 in every fixed number of time-slots
Fig. 3. Vehicles route map.
were carried out on a circular road located in Crete, France (a. Lebre
et al., 2015). We show the algorithm’s capability to effectively handle
scenarios with varying vehicle speeds by using real-world data fea-
turing vehicles of different speeds. As shown in Fig. 3, it includes a
roundabout with 4 entrances and exits, multiple two-lane or three-lane
roads, one bus road, four-lane change points, and 15 traffic lights. We
consider the trajectory of three vehicles, 𝑁 = 3, driving at variable
speed. The computation capability of each vehicle is 20 GHz in our
experiments. We assume 𝑀 = 5 RSUs are distributed among the
road at equal distances with communication range of 125 m, with
a computation capability of 100 GHz. These computation capabilities
assume typical values used in related research (Liu et al., 2019; Lv et al.,
2021). Moreover, the bandwidth is set to 2 MHz. It is also assumed
that the computation intensity of each task is 600 cycles/bit, and the
input data size follows a uniform distribution within [1, 8] MB. The
service latency allowed for each task is 1.7 s. It is worth mentioning
that all experiments were carried out on a computer system with an
Intel(R) Core(TM) i7- 3610QM 2.30 GHz processor and 4 GB of main
memory running an x64 Windows 10 operating system. Rainbow DQN
underwent a 1463 seconds training period, followed by a 68 seconds
test phase. These time statistics shed light on the computational needs
during training and emphasize the algorithms’ efficiency in practical
real-world situations.

The proposed Rainbow DQN-based algorithm together with three
state-of-the-art algorithms, namely DQN (Xu et al., 2022), Double
10
DQN (Ardagna et al., 2022), and DRQN (Chen et al., 2020), are im-
plemented by using PyTorch11; a machine learning framework based
on the Torch library used for applications such as computer vision and
natural language processing. We choose these DQN-based algorithms
because they are strongly used and accepted in the field of reinforce-
ment learning. The reason behind this choice was the discrete nature of
our action space, where the agent’s decisions are binary, e.g., deciding
whether or not to perform task offloading. This discrete characteristic
aligns perfectly with DQN-based methods which are tailored to handle
discrete action spaces. The learning rate, discount factor, size of the
mini-batch, and the replay buffer are set to 10−3, 0.9, 64, and 2000,
respectively. Herein a fixed number of time slots is considered and its
value is set to 320. A detailed list of the parameters and their values
are provided in Table 2.

6.2. Experimental results

For comparison and analysis purposes, multiple criteria, namely,
task failure, time, and energy consumption are considered for different
values of the parameters. Results are then depicted for the proposed
algorithm and all of the state-of-the-arts. Fast convergence to high
reward values is an indicator showing how effectively the iterations of
the algorithm are proceeding. The convergence curve of the cumulative

1 https://github.com/pytorch/pytorch

https://github.com/pytorch/pytorch
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Table 2
List of parameters and their values in the experiment.

Parameter Value Description

𝑀 5 Number of RSUs
𝑁 3 Number of vehicles
𝐼 3 Number of tasks in each time slot
𝜎 −110 dbm Gaussian white noise
�̄� 2 Path loss exponent
ℎ 1 Channel fading coefficient
𝐿𝑘 10−27 Effective switched capacitance coefficient of vehicle 𝑘
𝑃𝑡𝑟,𝑘 1.3 watts Transmission power of vehicle 𝑘
𝑃𝑖𝑑𝑙𝑒,𝑘 0.2 watts Power consumption of standby mode of vehicle 𝑘
𝐸 150 Episode size
𝑇 185 Number of time slots
𝐵 2 MHz System bandwidth
𝑑𝑘,𝑖 1.7 s Deadline of task 𝑖 generated by vehicle 𝑘
𝑎𝑘,𝑖 1–8 MB Data size of task 𝑖 generated by vehicle 𝑘
𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑘 20 GHz Computation capability of vehicle 𝑘
𝑓 𝑟𝑠𝑢𝑗 100 GHz Computation capability of RSU 𝑗
𝛼𝑘 0.5 Coefficient of importance of time in vehicle 𝑘
𝛽𝑘 0.5 Coefficient of importance of energy in vehicle 𝑘

Fig. 4. Convergence of the training stage for the proposed Rainbow DQN-based
algorithm and three DQN-based algorithms for the interval 7:00 a.m. to 9:00 a.m.

average reward is plotted for 150 episodes in Fig. 4. As shown in this
figure, within 150 episodes, and in the first 10 iterations, the presented
Rainbow DQN-based algorithm shows a faster convergence speed and
gets the highest reward in comparison with the other benchmarks. DQN
and Double DQN follow the same pattern approximately in the learning
process. Notably, the performance of the DRQN algorithm may seem
less favorable during the depicted training period due to its recur-
rent layer complexity. Recurrent layers excel at capturing sequential
dependencies in data, which is valuable for tasks involving temporal
sequences. However, this advantage comes with a trade-off; recurrent
networks typically demand more training time to effectively learn these
dependencies and reach an optimal policy. Thus, in Fig. 4, DRQN
may appear slower to converge or perform less efficiently compared to
non-recurrent algorithms like DQN. In Fig. 5, we observe the training
convergence of the proposed Rainbow DQN-based algorithm and the
SAC algorithm during the interval 5:00 p.m. to 7:00 p.m. Rainbow
demonstrates superior performance in terms of both convergence speed
and final policy quality. This advantage can be attributed to Rainbow’s
effective handling of discrete action spaces, enabling it to make precise
offloading decisions in the dynamic vehicular environment. The plot
highlights Rainbow’s capability to quickly adapt and optimize task
offloading strategies for improved efficiency.

Next, three main criteria are studied for the algorithms. Figs. 6 to 8,
respectively, show the average task execution time, average energy
11
Fig. 5. Convergence of the training stage for the proposed Rainbow DQN-based
algorithm and SAC algorithm for the interval 5:00 p.m. to 7:00 p.m.

Fig. 6. Total task processing delay against RSU capability.

consumption, and task failure rate versus the computation capability of
the MEC servers deployed in the RSUs. According to the plots, Rainbow
outperforms other algorithms by a significant margin and achieves
better outcomes for the objective function. Meanwhile, Double DQN
has a better performance compared to DQN due to alleviating over-
estimation, and DRQN has the highest task execution time compared
to the other three methods due to the lack of adequate time for trai-
ning.

It is important to understand how different algorithms succeed in
controlling the task failure rate when deadline intervals are too tight
or too loose. This is illustrated in Fig. 9, where Rainbow is performing
better than the other DQN-based algorithms, more specifically when
the tasks are more time-sensitive. As can be seen in Fig. 9, when dead-
lines are tight, the superiority of the presented Rainbow DQN-based
algorithm against the other algorithms is much clear.

The effect of increasing data size, on delay and energy consumption,
is also investigated herein, based on the results depicted in Figs. 10 and
11. Expectedly, the energy consumption and execution time increase
with the increase in the data size. For an input data size of 4 MB,
the latency and energy of all algorithms are almost the same. The
reason is that all schemes prefer to process tasks locally while ignoring
capabilities of RSUs. At increased data sizes, Rainbow shows better
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Fig. 7. Total task energy consumption against RSU capability.

Fig. 8. Task failure rate against RSU capability.

Fig. 9. Task failure rate against the deadline.
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Fig. 10. Total task processing delay against the average data size.

Fig. 11. Energy consumption of task processing against the average data size.

performance and keeps the energy consumption and latency levels
lower, even when facing more complex tasks, since its gap with the
other methods increases gradually.

Finally, the behavior of the two main factors, energy and time, is
assessed when the bandwidth is changing. In Figs. 12 and 13, with an
increase of the network bandwidth, less time and energy will be spent
on offloading tasks to the roadside units, and this ultimately leads to a
reduction in energy consumption and total time in all four algorithms.
According to the results, the proposed Rainbow DQN-based algorithm
is keeping lower consumption values and more optimal latency levels,
even facing the limited bandwidth of 1 MHz.

Table 3 provides a summary of the average energy consumption
values observed in our experiments. To offer a more comprehensive
perspective on the reliability and variability of these results, we have
thoughtfully included 95% confidence intervals alongside the average
values. These confidence intervals serve as essential indicators, offering
insights into the degree of certainty and dispersion within the energy
consumption data, further enhancing the robustness of our findings.

7. Conclusions and future work

In this paper, we focused on designing an efficient task offloading
algorithm in VEC networks in order to jointly minimize delay and
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Fig. 12. Total task processing delay against the bandwidth.

Fig. 13. Energy consumption of task processing against the bandwidth.

Table 3
Energy consumption of task processing (J).

Bandwidth (MHz) Rainbow Double DQN DQN DRQN

1 2.81 ± 0.18 3.24 ± 0.18 3.27 ± 0.25 3.56 ± 0.27
2 1.92 ± 0.23 2.15 ± 0.25 2.20 ± 0.29 2.31 ± 0.18
3 1.44 ± 0.25 1.58 ± 0.30 1.70 ± 0.32 1.79 ± 0.21
4 1.19 ± 0.26 1.31 ± 0.21 1.30 ± 0.25 1.47 ± 0.24
5 0.99 ± 0.30 1.08 ± 0.50 1.15 ± 0.27 1.23 ± 0.25

energy consumption by taking advantage of MEC servers deployed
on RSUs. In order to address the high mobility of vehicles and the
complex dynamic vehicular environment, we applied the Rainbow
algorithm, which is an integration of independent advances on DQN to
obtain a fast learning process and efficient decisions. In order to eval-
uate the effectiveness of the proposed algorithm, in comparison with
state-of-the-art DQN algorithms, extensive experiments were conducted
on real-world traffic data. The utilization of real traffic data in this
evaluation serves as a bridge between theoretical algorithmic develop-
ment and the complex realities of vehicular networks. This integration
empowers us to conduct a comprehensive analysis of the proposed
algorithm’s performance, ultimately ensuring its practical relevance
and applicability within the dynamic landscape of real-world vehicular
environments. The proposed task offloading algorithm shows better
13
performances, 18% and 15% improvement in energy consumption
and delay, respectively, compared to the state-of-the-arts. However,
the practical application of the Rainbow algorithm in VEC scenarios
presents certain challenges. It demands high computational resources,
potentially straining edge devices, and relies on extensive and diverse
training data collection. Additionally, its exploration strategies and
prioritized experience replay can introduce communication overhead,
impacting real-time responsiveness as a crucial factor in VEC. Balancing
algorithmic performance with resource constraints is a critical trade-
off in VEC, where the need for powerful hardware must be weighed
against improved decision-making. This decision requires careful opti-
mization to strike the right balance between performance and resource
practicality.

While offloading the whole task to the RSU is the more usual
case and is completely realistic, in some scenarios the vehicle divides
a complex task into multiple sub-tasks and locally processes only a
portion of them. In such a situation, it is important to keep track
of the task dependency graphs while distributing tasks in order to
successfully combine the results. Therefore, a possible future work is
to develop a dependency aware task offloading algorithm. In our study
on multi-vehicle task offloading, we recognize the potential of load
balancing as a promising future direction. While our current emphasis
is on optimizing task offloading in dynamic vehicular environments,
load balancing presents an opportunity to boost system performance by
evenly distributing computational tasks among RSUs. As another guide-
line for the future work, one can delve deeper into the ablation studies
of the Rainbow algorithm to gain a comprehensive understanding of
the individual impacts of its components, further enhancing the insights
into reinforcement learning.
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