
Flexer: Out-of-Order Scheduling for Multi-NPUs

Hyemi Min

hyemi@csap.snu.ac.kr
Seoul National University

Seoul, South Korea

Jungyoon Kwon

jungyoon@csap.snu.ac.kr
Seoul National University

Seoul, South Korea

Bernhard Egger

bernhard@csap.snu.ac.kr
Seoul National University

Seoul, South Korea

Abstract

Recent neural accelerators often comprise multiple neural

processing units (NPUs) with shared cache and memory. The

regular schedules of state-of-the-art scheduling techniques

miss important opportunities for memory reuse. This pa-

per presents Flexer, an out-of-order (OoO) scheduler that

maximizes instruction-level parallelism and data reuse on

such multi-NPU systems. Flexer employs a list scheduling

algorithm to dynamically schedule the tiled workload to all

NPUs. To cope with the irregular data access patterns of

OoO schedules, several heuristics help maximize data reuse

by considering the availability of data tiles at different levels

in the memory hierarchy. Evaluated with several neural net-

works on 2 to 4-core multi-NPUs, Flexer achieves a speedup

of up to 2.2x and a 1.2-fold reduction in data transfers for

individual layers compared to the best static execution order.

CCSConcepts: •Computer systems organization→ Par-

allel architectures; • Software and its engineering→
Compilers; • Theory of computation→ Shared mem-

ory algorithms.

Keywords: Parallel AI accelerators, out-of-order operation
scheduling, memory management
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1 Introduction

In recent years, deep learning has reshaped the computing

landscape. To accommodate the structural and computation-

ally complex workloads of deep neural networks (DNNs),
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Figure 1. Performance comparison of fixed dataflow versus

OoO schedules for various tiling sizes on a two-NPU system

more and more embedded systems contain multi-core neural

processing units (multi-NPUs) [7, 8, 18, 19, 24].

To match the resource constraints of a mobile NPU, the

computation of a DNN layer is partitioned into smaller oper-

ations. The size of these so-called tiles, the dimensions along

which the data is tiled, and the execution order of the individ-

ual tiles significantly affect the execution time, the number

of data accesses, and the energy efficiency of an execution

schedule. Several techniques to find the optimal schedule

for a certain layer and a given NPU have been proposed.

Depending on which data is kept on-chip, these techniques

can be classified into input, output, and weight-stationary

schedules [3]. Optimization techniques such as traditional

loop optimization [9, 15, 16, 23], machine learning [2, 13, 26],

genetic algorithms [14, 25], language models [22] or math-

ematical solvers [11, 21] are used to find a good data tiling

and loop ordering of a DNN layer.

On multi-NPUs architectures, these loop transformations

are applied to a data partitioning of a layer [4, 7, 27]. For

multiple cores with shared on-chip memory, such loop order-

based schedules miss opportunities for data reuse, resulting

in sub-optimal performance. Figure 1 plots the latency and

the of accessed off-chip memory of two layers from ResNet50

and VGG16 on a two-NPU system. For all valid data tilings,

the yellow dot represent the best fixed loop ordering while
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Figure 2. High-level accelerator structure

the blue dots represent the schedules obtained with the pre-

sented out-of-order scheduler. The results show that OoO

scheduling has the potential to achieve significantly better

performance than fixed loop order-based schedules.

In this work, we present Flexer, an execution schedule

generator for multi-NPUs. Flexer operates similar to a list

instruction scheduler for multi-issue machines where each

NPU represents an FU. It schedules the operations of a tiled

workload represented in a data-flow graph (DFG). Data tiles

are assigned to variable-sized “registers” and brought on/off-

chip on-the-fly by greedy allocation heuristics that maxi-

mize data reuse. A priority function selects the operations

that minimize data transfers and latency from the ready-to-

execute operations. Unlike loop order-based schedules that

use pre-determined regions for each type of data (weights,

input and output activations), the irregular data allocation

sequence of an OoO schedule can lead to memory fragmen-

tation. Flexer employs heuristics to prioritize data movement

operations that minimize fragmentation.

Flexer is evaluated on a parameterizable multi-NPU archi-

tecture with four DNNs. Compared to the best loop-order

schedule, the out-of-order schedules generated by Flexer
achieve a speedup of up to 1.67 and a data transfer size re-

duction of 1.26 for individual layers.

The remainder of this paper is organized as follows. Sec-

tion 2 describes a general multi-core NPU architecture and

provides some background on the execution of DNNs on

NPU systems. Section 3 introduces the high-level operation

of Flexer. Section 4 discusses optimizations for memory man-

agement and priority functions to generate efficient sched-

ules. Section 5 presents the results obtained for different

multi-NPU systems and deep neural networks. Section 6

discusses related work, and Section 7 concludes this paper.

2 Background

2.1 Parameterizable Accelerator Architecture

Flexer assumes a general multi-NPU DNN accelerator as

shown in Figure 2. A shared on-chip scratchpad memory,

labeledGlobal Buffer, facilitates data reuse between cores and
reduces the amount of data loaded from external memory.

Flexer is configurable in the number of NPUs and the size

of the global buffer. While the organization of the NPUs is

not of particular importance, a cycle-accurate performance

model must be available to compute the latency of operations

for given data (tile) sizes.
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(a) Tiled convolution

for ow=0 to OW, ow+=tow do : Loop1
       for oh=0 to OH, oh+=toh do : Loop2
              for ic=0 to IC, ic+=tic do : Loop3
                     for oc=0 to OC, oc+=2*toc do : Loop4

  tCONV N: OT[ow:ow+tow][oh:oh+toh][oc:oc+toc]
   +=IN[ic:ic+tic][iw:iw+tiw][ih:ih+tih]
     * WT[oc:oc+toc][ic:ic+tic]       

  tCONV N+1: OT[ow:ow+tow][oh:oh+toh][oc+toc:oc+2*toc]
   +=IN[ic:ic+tic][iw:iw+tiw][ih:ih+tih]
     * WT[oc+toc:oc+2*toc][ic+tic:ic+2*tic]

                   end
             end 
      end
end

(b) Tiled loop of a convolution

Loop order: Loop1 – Loop2 – Loop3 - Loop4

1st: tCONV1 tOT1 tIN1 tWT1
tCONV2 tOT2 tIN1 tWT2

2nd: tCONV3 tOT3 tIN1 tWT3
tCONV4 tOT4 tIN1 tWT4

3rd: tCONV5 tOT1 tIN2 tWT5 tOT1
tCONV6 tOT2 tIN2 tWT6 tOT2

4th: tCONV7 tOT3 tIN2 tWT7 tOT3
tCONV8 tOT4 tIN2 tWT8 tOT4

5th: tCONV9 tOT5 tIN3 tWT1
  ...

(c) Operation sequence for a given loop order

Figure 3. Tiled execution of a convolution

2.2 Tiling and Scheduling on Multi-NPU

Architectures

The computation of a single layer in a DNN, such as a con-

volution, has to be split into several operations that operate

on smaller data tiles because the total data size a layer is too

large to be brought into the NPU at once [1]. This process is

called tiling.
The latency of an operation depends on the dimension

and direction of a tiling. Figure 3 (a) illustrates the tiling of

a convolution layer. The three-dimensional tiles for input,

weight, and output data, 𝐼𝑁 ,𝑊𝑇 , and𝑂𝑇 , are parameterized

by height, width, and channel depth denoted by 𝑡?𝑤 , 𝑡?ℎ, and

𝑡?𝑐 where ? ∈ {𝐼𝑁 ,𝑊𝑇,𝑂𝑇 }. Figure 3 (b) shows the resulting
nested loop structure. The innermost loop is unrolled 𝑛 times
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Network H/W
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for  ow; ow < OW; ow += tow
  for ic; ic < IC; ic += tic
    for ow; ow < OW; ow += 3*tow
        tCONV0(tIN1, tWT, tOT1)
        tCONV1(tIN2, tWT, tOT2)
        tCONV2(tIN3, tWT, tOT3)

for  ic; ic < IC; ic += tic
  for ic; ic < IC; ic += tic
    for ow; ow < OW; ow += 3*tow
        tCONV0(tIN1, tWT, tOT1)
        tCONV1(tIN2, tWT, tOT2)
        tCONV2(tIN3, tWT, tOT3)

for oc; oc < OC; oc += toc
  for ic; ic < IC; ic += tic
    for ow; ow < OW; ow += 3*tow
        tCONV0(tIN1, tWT, tOT1)
        tCONV1(tIN2, tWT, tOT2)
        tCONV2(tIN3, tWT, tOT3)

Various 
Loop Structures

(tilings + data flow)

...

tCONV1
tCONV2
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. . .
<ready queue>

set reused size ... priority
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. . . . . .

<priority table>

     . . . . . .
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 tCONV2
 tCONV4
        . . .

<scheduled ops>

tIN1tWT1

tCONV1 tCONV2

tWT2

tOT1 tOT2

<DAG>

1. Generate priority table

3. Wakeup operations & update ready queue

Estimated latency: 71 cycles
Data transfer size: 113KB
LOAD tIN2
LOAD tWT1
LOAD tIN4
 tCONV2
 tCONV4
        . . .

Estimated latency: 223 cycles
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Figure 4. Organization and operation of Flexer

on a multi-NPU with 𝑛 NPUs. In Figure 3 (c), the execution

of the loop is shown as a sequence of convolution operations

𝑡𝐶𝑂𝑁𝑉 𝑂𝑇 ← 𝐼𝑇 ,𝑊𝑇 [, 𝑃𝑆]
where each operation generates a (partial) output tile 𝑂𝑇

from an input tile 𝐼𝑇 , a weight tile 𝑊𝑇 , and an optional

partial sum 𝑃𝑆 .

The state-of-the-art scheduling techniques determine the

tiling size and the loop order to minimize a given goal. As

shown in Figure 1, static approaches can miss opportuni-

ties for better schedules on multi-NPU architectures. Con-

sider the situation as shown in Figure 3 (c) where the first

two convolutions, tCONV1 and tCONV2, have been executed.

tCONV1 generates tOT1 which allows tCONV5 to run; simi-

larly, the result OT2 generated by tCONV2 allows execution
of tCONV6. Other independent convolutions such as tCONV9
are also ready to be executed. Flexer is able to achieve better

execution plans by considering the dataflow graph of tiled

convolutions and scheduling operations that maximize data

reuse and minimize the latency of ready-to-run operations.

3 Overview of Flexer

The organization and operation of Flexer is shown in Figure 4.
Flexer schedules operations similar to a list instruction sched-

uler for multi-issue machines where each NPU represents an

FU. Flexer assumes a “register-to-register” model, i.e., only

computational operations are represented in the DFG of a

layer. The assignment of SPM to data tiles is implemented

in a greedy manner and similar to a linear scan register al-

locator. Data movements are treated like spill operations:

the required memory operations to move data tiles (input,

weight, partial sum and output) from DRAM to SPM and

vice-versa are inserted on-the-fly. For a given DAG of a layer,

all operations whose inputs are available are inserted into the

ready queue from where they are selected for execution on

the individual NPUs. The latency of an operation𝑜 for a given

tile size is assumed to be available through a model. If not all

required input tiles are currently present in the SPM, a load 𝑙

(and, potentially, a prior spill 𝑠) are inserted and the latency of

the operation is updated (𝑙𝑎𝑡 (𝑡𝑜𝑡𝑎𝑙) = 𝑙𝑎𝑡 (𝑜)+𝑙𝑎𝑡 (𝑝)+𝑙𝑎𝑡 (𝑙)).
Algorithm 1 details the operation of Flexer. For a given

network and hardware configuration, Flexer generates an
OoO schedule for all viable tilings and data flows (i.e., loop

orderings) and returns the best schedule (lines 2–11). The

metric to rank the schedules by is configurable; in this work,

we use 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑟𝑒𝑑 𝑑𝑎𝑡𝑎 (line 5).

The function GetSchedule computes an OoO schedule

for a given tiling and data flow (lines 12–27). After generat-

ing the data-flow graph, the ready queue is populated with

all operations that have no unsatisfied data dependencies

(lines 13–15). Scheduling is performed by generating all pos-

sible sets of parallelizable tiled operations and calculating the

data transfer size and total latency to determine the priority

of each set. Flexer then schedules the set with the highest

priority (line 19- 20). Flexer checks whether the data of all
input operands is available in the global buffer and reserves

space for the generated result. If necessary, operations are

generated to spill (write-back) to, resp. load required data

from off-chip memory (line 21). After all memory operations

have been issued, the operations of the set are scheduled

to the individual NPUs (line 22). For each operation, Flexer
records the start and end time of the operation considering

data dependencies and the availability of the resources. Oper-

ations that become ready as a result of executing the current

set are woken up and placed in the ready queue (line 24).
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Algorithm 1: Scheduling

Input :network configuration, hardware configuration

1 𝑚𝑖𝑛_𝑚𝑒𝑡𝑟𝑖𝑐 ←∞, 𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← 𝑁𝑈𝐿𝐿

2 foreach 𝑡𝑖𝑙𝑖𝑛𝑔_𝑓 𝑎𝑐𝑡𝑜𝑟 do
3 foreach 𝑑𝑎𝑡𝑎𝑓 𝑙𝑜𝑤 do

4 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← GetSchedule(tiling_factor, dataflow)

5 𝑚𝑒𝑡𝑟𝑖𝑐 ← 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒.𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒.𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒
6 if 𝑚𝑒𝑡𝑟𝑖𝑐 < 𝑚𝑖𝑛_𝑚𝑒𝑡𝑟𝑖𝑐 then

7 𝑏𝑒𝑠𝑡_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒

8 𝑚𝑖𝑛_𝑚𝑒𝑡𝑟𝑖𝑐 ←𝑚𝑒𝑡𝑟𝑖𝑐

9 end

10 end

11 end

Output :𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑_𝑜𝑝𝑠

12 Function GetSchedule(𝑡𝑖𝑙𝑖𝑛𝑔_𝑓 𝑎𝑐𝑡𝑜𝑟, 𝑑𝑎𝑡𝑎𝑓 𝑙𝑜𝑤):

13 𝐷𝐴𝐺 ← GenerateDAG(𝑡𝑖𝑙𝑖𝑛𝑔_𝑓 𝑎𝑐𝑡𝑜𝑟, 𝑑𝑎𝑡𝑎𝑓 𝑙𝑜𝑤)
14 𝑜𝑝_𝑙𝑖𝑠𝑡 ← {𝑂𝑃 | 𝑂𝑃 ∈ 𝐷𝐴𝐺 }

15 𝑟𝑒𝑎𝑑𝑦_𝑜𝑝_𝑙𝑖𝑠𝑡 ← {𝑂𝑃𝑟𝑒𝑎𝑑𝑦 | 𝑂𝑃𝑟𝑒𝑎𝑑𝑦 ∈ 𝐷𝐴𝐺
,𝑂𝑃𝑟𝑒𝑎𝑑𝑦 has no dependency}

16 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑_𝑜𝑝𝑠 ← ∅
17 𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒 ← 0

18 while 𝑟𝑒𝑎𝑑𝑦_𝑜𝑝_𝑙𝑖𝑠𝑡 != ∅ or 𝑜𝑝_𝑙𝑖𝑠𝑡 != ∅ do
19 𝑠𝑒𝑡𝑠 ← MakeCombination(𝑟𝑒𝑎𝑑𝑦_𝑜𝑝_𝑙𝑖𝑠𝑡, 𝑛𝑢𝑚_𝑐𝑜𝑟𝑒𝑠)
20 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑜𝑝𝑠 ← Get1stPrioritySet(𝑠𝑒𝑡𝑠)
21 𝑚𝑒𝑚_𝑜𝑝𝑠 ← GenerateMemOPs(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑜𝑝𝑠)
22 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑_𝑜𝑝𝑠 ← 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑_𝑜𝑝𝑠

+ SchedulingOPs(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑜𝑝𝑠,𝑚𝑒𝑚_𝑜𝑝𝑠)
23 𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒 ← 𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒

+ GetDataTransferSize(𝑚𝑒𝑚_𝑜𝑝𝑠)
24 𝑟𝑒𝑎𝑑𝑦_𝑜𝑝_𝑙𝑖𝑠𝑡 ← 𝑟𝑒𝑎𝑑𝑦_𝑜𝑝_𝑙𝑖𝑠𝑡

+WakeupOPs(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑜𝑝𝑠,𝑚𝑒𝑚_𝑜𝑝𝑠)
25 end

26 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ← 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑_𝑜𝑝𝑠.𝑙𝑎𝑠𝑡_𝑒𝑙𝑒𝑚𝑒𝑛𝑡 .𝑒𝑛𝑑_𝑡𝑖𝑚𝑒

27 return 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 (𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑠𝑖𝑧𝑒, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑_𝑜𝑝𝑠)
28 end

Flexer iterates over all possible data tilings and computes

a schedule for each DFG. The complexity of computing a

schedule for a given DFG is dominated by the number of

data allocations which is exponential in the number of NPUs.

Overall, this leads to a huge number of schedules to be calcu-

lated. Flexer’s single-threaded code requires about 20 hours

to find a schedule for a 4-core NPU and ResNet50 on a recent

computer. If runtime is a concern, implementing a mem-

ory function to remember the best tiling could significantly

reduce the runtime of the scheduler. Also, schedules for dif-

ferent data allocations could be computed in parallel.

4 Memory Management and Prioritization

Flexer creates sets of 𝑛 operations that execute in parallel

on an multi-NPU system comprising of 𝑛 individual NPUs.

Each set is composed of 𝑛 operations from the ready queue

and is assigned a priority that is computed according to the

priority function. Flexer aims to maximize data reuse in the

on-chip memory; the priority thus reflects the impact of

an operation set on the amount of transferred data and the

execution latency of the set.

Another important concern is the management of the

global on-chip buffer space. The impact on the amount of

data transferred and the latency of a set depend on the or-

der of execution and the memory overhead which, in turn,

depend on a good memory management policy. The mem-

ory management policy decides where to place data that is

generated or loaded from off-chip memory and what data to

evict when insufficient on-chip memory is available.

In state-of-the-art fixed-order schedulers, memory man-

agement is relatively simple because the ordering of data

transfers is regular and the sizes of the regions reserved

for input, weight, and output data are known. The irregular

schedules generated by Flexer’s OoO scheduler, however, call

for more elaborate memory management policies.

Simple memory allocation policies such as first fit place-

ment result in a heavily fragmented on-chip memory and

cause a large number of data reload and spill operations. A

fragmented on-chip memory prevents the OoO scheduler

from generating schedules with a high computational load

because the NPUs are stalled by memory operations. The de-

cision about which data to spill is equally important because

it impacts both the data reuse and amount of data transferred

(Section 4.1).

Another consideration is the large number of sets of par-

allel operations. While the goal of Flexer is to demonstrate

the potential of OoO scheduling and not speed, evaluating

all possible sets along with determining how to manage the

on-chip memory would cause too much overhead in the

scheduler. Section 4.3 details how the priority of the sets is

computed, how the on-chip memory is managed, and how

sets are ignored that represent identical data flows with dif-

ferent operations.

4.1 Memory Management

For regular loop-order schedules, the size of the memory

regions to hold input, weight, and output data do not change

once their size has been determined. Figure 5 illustrates the

differences of memory management with fixed loop-order

scheduling versus out-of-order scheduling. Figure 5 (a) il-

lustrates the memory organization after the first operation

set has been scheduled according to the schedule from Fig-

ure 3 (c), an input-stationary schedule that shares the input

data among NPUs and maximizes the reuse of the on-chip

input data. Weight and output data differ from set to set and
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Scheduled 
Set
:

0x0000

0x0008

0x000a

0x0010

0x0014

0x001a

<1st iter>

tCONV1   tOT1  tWT1  tIN1
tCONV2   tOT2  tWT2  tIN1

0x0022

tOT2

tWT2

tOT1

tWT1

tIN1

(a) Initial status

tWT4

tWT3

tOT4

tWT2

tOT3

tWT1

tIN1

tCONV3  tOT3  tWT3  tIN1
tCONV4  tOT4  tWT4  tIN1

0x0000

0x0008

0x000a

0x0010

0x0014

0x001a

<2nd iter>

0x0022

0x001e
tWT4

tWT3

tOT2

tWT6

tOT1

tWT5

tIN2

tCONV5  tOT1  tWT5  tIN2  tOT1
tCONV6  tOT2  tWT6  tIN2  tOT2

0x0000

0x0008

0x000a

0x0010

0x0014

0x001a

0x0022

0x001e

<3rd iter>

(b) Status in loop-order scheduling

0x0000

0x0008

0x000a

0x0010

0x001e

0x0022

0x0004

0x0016

<3rd iter>

0x000e

tIN3

tOT1

tWT5

tWT1

tIN2

tCONV5   tOT1  tWT5  tIN2  tOT1
tCONV9  tOT5  tWT1  tIN3

(c)–1 Unoptimized

0x0000

0x0008

0x000a

0x0010

0x0014

0x001a

0x0022

<3rd iter>

tIN3

tOT5

tWT5

tOT1

tWT1

tIN2

tCONV5  tOT1  tWT5  tIN2  tOT1
tCONV9  tOT5  tWT1  tIN3

(c)–2 Optimized

(c) Status in OoO scheduling

Figure 5. On-chip memory management

are brought in/out of the on-chip global buffer on demand.

Figure 5 (a) illustrates the memory organization after the

first operation set has been scheduled. Figure 5 (b) shows

memory management for loop-order schedules. The second

set reuses the input data and new weight data is allocated in

a free memory block to maximize memory utilization. New

output data is allocated to the same memory region as the

previously generated partial sums tOT1, tOT2 by spilling (e.g.,
writing back) the data back to off-chip memory. Similarly, in

the third iteration, tIN1 is not used anymore and replaced

by tIN2; other data is also allocated at fixed locations and

replaces existing data. Such an allocation is only possible

because the data-flows observed with loop-order schedul-

ing are regular, allowing the scheduler to pre-compute the

memory addresses for the data to be used by each operation.

Flexer’s out-of-order scheduler, however, does not gener-
ate regular dataflows. Figure 5 (c) shows one possible mem-

ory state where {tCONV5, tCONV9} are selected for execution
after the second iteration from Figure 5 (b). Since the on-chip

memory is full, some data needs to be spilled. The weight

tile tWT1 reused by tCONV9, and tIN1 can be overwritten

by the same-sized tIN2 because tIN1 is no longer needed.

Spilling needs to evict one of the remaining data elements

[tOT3, tWT2, tOT4, tWT3, tWT4]. With a first-fit policy

that traverses the on-chip memory and spills the first spill-

able block that is big enough to hold the requested data,

memory fragmentation occurs as shown in Figure 5 (c)–1:

tOT3 is spilled and tWT5 is allocated in its place, resulting a

small free memory fragment at 0x000e∼0x0010. Continuing
with first-fit spilling, tWT2, tOT4 are spilled and replaced

by tOT1 and tWT3 is spilled for tIN3, creating another free
memory fragment at 0x001e∼0x0022. This fragmentation

prevents the allocation of tOT5 despite sufficient free mem-

ory being available in the on-chip memory.

Avoiding such fragmentation is critical to achieving a good

performance. A fragmented on-chip memory leads to low

utilization and reuse and causes unnecessary spills. Another

important point is the selection of the data tiles to be spilled.

While the remaining reuse count of a block can be deter-

mined by inspecting the DFG of the layer, the execution or-

der of operations affects their reuse distance. Flexer employs

a heuristical algorithm that minimizes memory fragmenta-

tion and maximizes reuse through careful tile placement and

spilling. In-place replacements of equally-sized blocks where

the allocated block is no longer needed and can be replaced

by an incoming block are handled first, then free memory

blocks are allocated with a best-fit strategy. If there are still

required tiles left, some allocated blocks need to be spilled.

Flexer’s spilling heuristics are illustrated in Algorithm 2.

The spilling algorithm is invoked once for each allocated

tile that doesn’t fit into the on-chip memory. The goal of

the heuristics is first to minimize fragmentation and then

to maximize data reuse. The minimal sequence of consec-

utive blocks that is sufficiently large to hold the requested

but causes the least fragmentation and highest data reuse

is found by a loop nest iterating over all possible start and

end positions (lines 9 and 11). The conditions under which a

sequence is considered to be a new best sequence of blocks to

spill (best_spill_blks) have been separated for better readabil-

ity: first, a sequence is selected if it causes less fragmentation

than the so-far best sequence (line 18). Second, a sequence is

selected if it causes the same amount of fragmentation but is

expected to lead to more data reuse than the so-far best se-

quence (line 20). Finally, a sequence is selected if it causes the

same amount of fragmentation and data reuse but consists

of fewer blocks than the currently best sequence (line 23). A

newly identified best sequence is remembered (lines 28–31)

and finally returned when all possible sequences of blocks

have been explored (line 36).
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Algorithm 2: Finding victim blocks for spilling

1 struct {

2 Data data

3 int size

4 int start_addr

5 int end_addr

6 } Block;
Input :𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒

7 𝑚𝑒𝑚𝑜𝑟𝑦_𝑚𝑎𝑝 ← list of allocated blocks

8 𝑏𝑒𝑠𝑡_𝑠𝑝𝑖𝑙𝑙_𝑏𝑙𝑘𝑠 ← ∅,𝑚𝑖𝑛_𝑑𝑖𝑠𝑎𝑑𝑣 ←∞,𝑚𝑖𝑛_𝑓 𝑟𝑎𝑔_𝑠𝑖𝑧𝑒 ←∞
9 for 𝑠𝑡𝑎𝑟𝑡 = 0 . . . sizeof(𝑚𝑒𝑚𝑜𝑟𝑦_𝑚𝑎𝑝) − 1 do
10 𝑠𝑝𝑖𝑙𝑙_𝑏𝑙𝑘𝑠 ← ∅, 𝑑𝑖𝑠𝑎𝑑𝑣 ← 0, 𝑠𝑝𝑖𝑙𝑙_𝑠𝑖𝑧𝑒 ← 0, 𝑝𝑖𝑐𝑘 ← 𝑓 𝑎𝑙𝑠𝑒

11 for 𝑒𝑛𝑑 = 𝑠𝑡𝑎𝑟𝑡 . . . sizeof(𝑚𝑒𝑚𝑜𝑟𝑦_𝑚𝑎𝑝) do
12 𝑏𝑙𝑘 ←𝑚𝑒𝑚𝑜𝑟𝑦_𝑚𝑎𝑝 [𝑒𝑛𝑑] // get 𝑗𝑡ℎ block

13 𝑠𝑝𝑖𝑙𝑙_𝑏𝑙𝑘𝑠 ← 𝑠𝑝𝑖𝑙𝑙_𝑏𝑙𝑘𝑠 + 𝑏𝑙𝑘
14 𝑠𝑝𝑖𝑙𝑙_𝑠𝑖𝑧𝑒 ← 𝑠𝑝𝑖𝑙𝑙_𝑠𝑖𝑧𝑒 + 𝑏𝑙𝑘.𝑠𝑖𝑧𝑒
15 𝑑𝑖𝑠𝑎𝑑𝑣 ← 𝑑𝑖𝑠𝑎𝑑𝑣 + 𝑏𝑙𝑘.𝑠𝑖𝑧𝑒 × 𝑏𝑙𝑘.𝑑𝑎𝑡𝑎.𝑟𝑒𝑚𝑎𝑖𝑛_𝑢𝑠𝑒𝑠

16 if 𝑠𝑝𝑖𝑙𝑙_𝑠𝑖𝑧𝑒 ≥ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒 then
17 𝑓 𝑟𝑎𝑔_𝑠𝑖𝑧𝑒 ← 𝑠𝑝𝑖𝑙𝑙_𝑠𝑖𝑧𝑒 − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑_𝑠𝑖𝑧𝑒
18 if (𝑓 𝑟𝑎𝑔_𝑠𝑖𝑧𝑒 < 𝑚𝑖𝑛_𝑓 𝑟𝑎𝑔_𝑠𝑖𝑧𝑒) then
19 𝑝𝑖𝑐𝑘 ← 𝑡𝑟𝑢𝑒

20 else if 𝑓 𝑟𝑎𝑔_𝑠𝑖𝑧𝑒 ==𝑚𝑖𝑛_𝑓 𝑟𝑎𝑔_𝑠𝑖𝑧𝑒 and
21 𝑑𝑖𝑠𝑎𝑑𝑣 < 𝑚𝑖𝑛_𝑑𝑖𝑠𝑎𝑑𝑣 then
22 𝑝𝑖𝑐𝑘 ← 𝑡𝑟𝑢𝑒

23 else if 𝑓 𝑟𝑎𝑔_𝑠𝑖𝑧𝑒 ==𝑚𝑖𝑛_𝑓 𝑟𝑎𝑔_𝑠𝑖𝑧𝑒 and
24 𝑑𝑖𝑠𝑎𝑑𝑣 ==𝑚𝑖𝑛_𝑑𝑖𝑠𝑎𝑑𝑣 and
25 len(𝑠𝑝𝑖𝑙𝑙_𝑏𝑙𝑘𝑠) < len(𝑏𝑒𝑠𝑡_𝑠𝑝𝑖𝑙𝑙_𝑏𝑙𝑘𝑠)) then
26 𝑝𝑖𝑐𝑘 ← 𝑡𝑟𝑢𝑒

27 end

28 if pick == true then
29 𝑏𝑒𝑠𝑡_𝑠𝑝𝑖𝑙𝑙_𝑏𝑙𝑘𝑠 ← 𝑠𝑝𝑖𝑙𝑙_𝑏𝑙𝑘𝑠

30 𝑚𝑖𝑛_𝑑𝑖𝑠𝑎𝑑𝑣 ← 𝑑𝑖𝑠𝑎𝑑𝑣

31 𝑚𝑖𝑛_𝑓 𝑟𝑎𝑔_𝑠𝑖𝑧𝑒 ← 𝑓 𝑟𝑎𝑔_𝑠𝑖𝑧𝑒

32 end

33 break

34 end

35 end

36 end

Output :𝑏𝑒𝑠𝑡_𝑠𝑝𝑖𝑙𝑙_𝑏𝑙𝑜𝑐𝑘𝑠

4.2 Pruning

While the main purpose of this work is to explore and demon-

stration the potential of out-of-order scheduling and thus the

runtime of the employed algorithms has largely been ignored,

a minimal number optimizations had to be implemented to

reduce Flexer’s runtime to a reasonable level. Flexer considers
every possible combination of ready operations to be issued

as an operation set. For 𝑜 operations in the ready queue and

𝑛 NPU cores, the number of possible combinations is given

by 𝑜𝐶𝑛 which quickly leads to an unattainable number of

combinations to consider. With 100 operations in the ready

queue and four NPUs, for example, 100𝐶4 ≈ 3.92 × 106. We

observe that the vast majority of these sets lead to identical

tOT12
tOT11

tOT10
tOT9

tOT8
tOT7

tOT6
TOT5

tOT4
tOT3

tOT2

tWT8

tWT4

tWT7

tWT3

tWT6

tWT2

tIN6
tIN3

tIN5
tIN2

tIN4
tIN1

tWT5

tWT1
tOT1

(a) Tiling convolution diagram

tCONV1 tOT1 tIN1 tWT1
tCONV2 tOT2 tIN1 tWT2
tCONV3 tOT3 tIN2 tWT1
tCONV4 tOT4 tIN2 tWT2
tCONV5 tOT5 tIN3 tWT1
tCONV6 tOT6 tIN3 tWT2
tCONV7 tOT7 tIN1 tWT3
tCONV8 tOT8 tIN1 tWT4
...
tCONV13 tOT1 tIN4 tWT5 tOT1
tCONV14 tOT2 tIN4 tWT6 tOT2
...

(b) Operation sequence

Figure 6. Example of a tiled convolution

data-flow patterns with regards to the number and type of

data movement operations. Since the data flow is the main

factor when deciding the priority of an operation set, such

duplicates are ignored.

Duplicates are identified by classifying an operation set’s

data flow by the number of newly allocated and re-used tiles

of each type (IN,WT,OT). The dataflow map in Figure 7 (c)

illustrates the concept. Operation set pruning reduces the

number of operation sets to the order of

∏𝑛
𝑖=1 𝑃 (𝑖) where

𝑃 (𝑥) denotes the number of distinct integer partitions of 𝑥 .

4.3 Operation Set Priority

In each scheduling step, Flexer selects the operation set with

the highest priority for scheduling (Algorithm 1, line 20). Sim-

ilar to spilling, the priority function assigns a higher priority

to operations sets that lead to higher memory utilization

by considering the data reuse, the amount of data brought

on-chip, and the amount of spilled data. In particular, the

priority of an operation set is determined as follows:

• Prioritize data reuse

Flexer minimizes the amount of data transferred be-

tween off- and on-chip memory by computing a so-

called memory benefit that considers the amount of

reused and spilled data of an operation set. The mem-

ory benefit is calculated as follows:

memory benefit = 𝑟𝑒𝑢𝑠𝑒𝑑 𝑑𝑎𝑡𝑎 − 𝑠𝑝𝑖𝑙𝑙𝑒𝑑 𝑑𝑎𝑡𝑎

reused data =
∑︁

𝑟𝑑𝑎𝑡𝑎𝑂𝑃

𝑠𝑖𝑧𝑒 (𝑟𝑑𝑎𝑡𝑎𝑂𝑃 )

spilled data =

∑︁
𝑠𝑑𝑎𝑡𝑎𝑂𝑃

𝑠𝑖𝑧𝑒 (𝑠𝑑𝑎𝑡𝑎𝑂𝑃 )
∗𝑚𝑎𝑥 𝑟𝑒 𝑓 𝑐𝑜𝑢𝑛𝑡 (𝑠𝑑𝑎𝑡𝑎𝑂𝑃 )

max ref count =𝑚𝑖𝑛

{
# 𝑜 𝑓 𝑐𝑜𝑟𝑒𝑠,

𝑟𝑒𝑚𝑎𝑖𝑛. 𝑢𝑠𝑒𝑠 (𝑑𝑎𝑡𝑎)

𝑤ℎ𝑒𝑟𝑒 : 𝑟𝑑𝑎𝑡𝑎𝑂𝑃 = data reused by OP

𝑠𝑑𝑎𝑡𝑎𝑂𝑃 = data spilled by OP

𝑂𝑃 = operations in set

When calculating value of 𝑠𝑝𝑖𝑙𝑙𝑒𝑑 𝑑𝑎𝑡𝑎, Flexer consid-
ers no only the size but also the remaining maximum

reference count of the spilled data to keep data with a

high reuse count in on-chip memory. As an example,
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: Reused Data : Spilled Data : New Allocated Data

tOT12
tOT11

tOT10
tOT9

tOT8
tOT7

tOT6
tOT5

tOT4
tOT3

tOT2

tWT8

tWT4

tWT7

tWT3

tWT6

tWT2

tIN6
tIN3

tIN5
tIN2

tIN4
tIN1

tWT5

tWT1
tOT1

tCONV7 tOT7 tIN1 tWT3
tCONV9 tOT9 tIN2 tWT3Set23:

New Memory Status

Previous Memory Status

Reused Data = 6, Reused Map = {IN:{1,1}, WT:-, OT:- }

Spilled Data = 2*1(tWT1) + 1*1(tOT3) + 1*1(tOT4) = 4 

tIN1 tWT3 tOT7 tWT2 tOT9 tIN2

tIN1 tIN2

tIN1 tWT1 tWT2 tIN2tOT3 tOT4

tWT1 tOT3 tOT4

Load Data = 2 Store Data = 2
tOT3 tOT4tWT3

Memory Benefit = 2, Memory Overhead = 4

tOT12
tOT11

tOT10
tOT9

tOT8
tOT7

tOT6
tOT5

tOT4
tOT3

tOT2

tWT8

tWT4

tWT7

tWT3

tWT6

tWT2

tIN6
tIN3

tIN5
tIN2

tIN4
tIN1

tWT5

tWT1
tOT1

tCONV7 tOT7 tIN1 tWT3
tCONV11 tOT11 tIN3 tWT3Set25:

New Memory Status

Previous Memory Status

Reused Data = 3, Reused Map = {IN:{1}, WT:-, OT:- }

Spilled Data = 3*2(tIN2) + 2*1(tWT1) + 1*1(tOT3) + 1*1(tOT4) = 10

tIN1 tWT1 tWT2 tIN2tOT3 tOT4

tIN1 tWT3 tOT7 tOT11

tIN1

tWT1 tOT3tOT4

Load Data = 5 Store Data = 2 
tOT3 tOT4tWT3

Memory Benefit = -7, Memory Overhead = 7

(in 2 core) max reference count of tIN1/2 = 2, tWT1/2 = 1, tWT3/4/… = 2, tOT1/2/3/4 = 1
size of tIN* = 3, tWT* = 2, tOT* = 1

tWT2 tIN3

tIN2

tOT12
tOT11

tOT10
tOT9

tOT8
tOT7

tOT6
tOT5

tOT4
tOT3

tOT2

tWT8

tWT4

tWT7

tWT3

tWT6

tWT2

tIN6
tIN3

tIN5
tIN2

tIN4
tIN1

tWT5

tWT1
tOT1

tCONV7 tOT7 tIN1 tWT3
tCONV15 tOT3 tIN5 tWT5 tOT3Set29:

New Memory Status

Previous Memory Status

Reused Data = 4, Reused Map = {IN:{1}, WT:-, OT:{1}}

Spilled Data = 3*2(tIN2) + 2*1(tWT1) + 2*1(tWT2) + 1*1(tOT4) = 11

tIN1 tWT1 tWT2 tIN2tOT3 tOT4

tIN1 tWT3 tOT7

tIN1

tWT1 tOT4

Load Data = 7 Store Data = 1 

tOT4tWT3 tWT5

Memory Benefit = -7, Memory Overhead = 8

tWT5 tIN5

tIN2

tIN3

tOT3

tOT3

tWT2

tIN5

New Data Map = {IN:-, WT:{2}, OT:{1,1}} 
tWT3 tWT3 tOT7tOT9

New Data Map = {IN:{1}, WT:{2}, OT:{1,1}} 
tWT3 tWT3 tOT7

New Data Map = {IN:{1}, WT:{1,1}, OT:{1}} 
tWT3 tOT7tIN3 tOT11 tIN5 tWT5

(a) Measuring memory benefit and memory overhead of sets

tCONV5 tOT5 tIN3 tWT1

tCONV6 tOT6 tIN3 tWT2

tCONV7 tOT7 tIN1 tWT3

tCONV8 tOT8 tIN1 tWT4

tCONV9 tOT9 tIN2 tWT3

tCONV10 tOT10 tIN2 tWT4

tCONV11 tOT11 tIN3 tWT3

...

tCONV13 tOT1 tIN4 tWT5 tOT1

tCONV14 tOT2 tIN4 tWT6 tOT2

tCONV15 tOT3 tIN5 tWT5 tOT3

...

(b) Operations

Set Memory 
Benefit

Memory
Overhead

Utility Priority
Dataflow map

ID Operations Reuse Map New Data Map

set1 tCONV5/6 -4 5 1 4 {IN:-, WT: {1,1}, OT:-} {IN:{2},WT:-,OT:{1,1}}

set2 tCONV5/7 -5 7 1 5 {IN:{1},WT:{1},OT:-} {IN:{1},WT:{1},OT:{1,1}}

set3 tCONV5/8 -5 7 1 {IN:{1},WT:{1},OT:-} {IN:{1},WT:{1},OT:{1,1}}

... ... ...

set23 tCONV7/9 2 4 1 1 {IN:{1,1},WT:-,OT:-} {IN:-,WT:{2},OT:{1,1}}

set24 tCONV7/10 0 6 1 2 {IN:{1,1},WT:-,OT:-} {IN:-,WT:{1,1},OT:{1,1}}

set25 tCONV7/11 -7 7 1 6 {IN:{1},WT:-,OT:-} {IN:{1},WT:{2},OT:{1,1}}

... ... ...

set28 tCONV7/14 -3 13 1 3 {IN:{1},WT:-,OT:-} {IN:{1},WT:{1,1},OT:{1,1}}

set29 tCONV7/15 -7 8 1 7 {IN:{1},WT:-,OT:{1}} {IN:{1},WT:{1,1},OT:{1}}

... ... ...

(c) Priority table

Figure 7. Operation set selection and memory management of Flexer

consider the situation shown in Figure 7 (b) showing

the operation list after tCONV1-4 have been scheduled.

The𝑚𝑎𝑥 𝑟𝑒 𝑓 𝑐𝑜𝑢𝑛𝑡 for tIN1,2 and tWT3,4 is 2, while

the value for tWT1,2 and tOT1-4 is 1 since these blocks
are only referenced once more.

• Prioritize higher memory utilization

If the memory benefit of two operation sets is identical,

Flexer selects the set that achieves a higher memory

utilization because a better packed on-chip memory

offers more opportunities for data reuse for later oper-

ations.

• Prioritize shorter memory operations

If memory benefit and utilization are identical for two

operation sets, Flexer selects the set with the lower

latency to spill and load the required data to elimi-

nated or minimize idle time of the NPUs. For example,

consider the operation sets set25 and set29 in Fig-

ure 7 (a) that have an identical memory benefit and

memory utilization. In this case, set25 is assigned a

higher priority since its memory overhead is smaller

than that of set29.
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Figure 7 illustrates the entire process for a two-NPU archi-

tecture after the operations tCONV1-4 from the tiling exam-

ple in Figure 6 have been scheduled. Figure 7 (a) visualizes

the data flow and memory allocation for the three opera-

tion sets set23, set24 and set29. Details about the priority
calculation are listed the priority table (Figure 7 (c)). The

classification of the data-flows of set2 and set3 are identi-
cal, hence set3 is pruned. For the remaining sets, the table

shows the dataflow maps and the resulting memory benefit,

overhead, and the final priority of the operation sets. Opera-

tion set set23 is assigned the highest priority of 1 and thus

selected as the next set to be scheduled. Also note that this is

not an operation order that is generated by one of the static

loop-order scheduling techniques.

5 Evaluation

Flexer is evaluated with four DNNs and a total of eight differ-

ent configurations of a parameterizable multi-NPU accelera-

tor developed by Samsung Research. The organization or the

accelerator is identical to the general multi-NPU architecture

from Section 2.1. Each NPU core contains a compute array

comprising 32 × 32 PEs running at 1GHz. The architecture
is parameterizable in the size of the on-chip memory, the

available memory bandwidth, and the number of NPU cores.

The accelerator itself is part of an SoC that includes general-

purpose cores and other accelerators. The entire develop-

ment toolchain comprising a compiler, a cycle-accurate sim-

ulator, and an RTL generator adapts to a specific architecture

instance as defined by a configuration file listing the hard-

ware parameters of the accelerator.

We compare the performance of the presented out-of-

order scheduling technique to the the best static loop-order

schedule with the four networks VGGNet-16 [20], ResNet-
50 [10], SqueezeNet [12], YOLOv2 [17] on eight multi-NPU

architectures as shown in Table 1. The baseline is found

through exhaustive search among all schedules with differ-

ent data stationary models and viable tiling sizes. Figure 8

shows the baseline-normalized performance of schedules

generated by Flexer in terms of execution time (inference)

and the amount of transferred for the different networks

and hardware configuration. Flexer achieves an end-to-end

(entire network) speedup of up to 1.67× and a reduction of

up to 1.26× in the amount of transferred data.

The end-to-end network performance from Figure 8 blurs

the full potential of OoO scheduling because for some of the

many layers, the best static schedule is optimal. In Figure 9,

we compare the performance of Flexer with the baseline

for a given network and hardware on a layer-by-layer ba-

sis. Figure 9 (a) reveals that Flexer achieves up to a 2.17-fold

speedup and a 1.53-fold reduction in transferred data for a

single layer. On the other hand, we also observe that Flexer
produces less efficient schedules in terms of data transfers

Table 1. Hardware configurations used in the evaluation

# of cores on-chip memory size bandwidth

arch1 2 256 32

arch2 2 256 64

arch3 2 512 32

arch4 2 512 64

arch5 4 256 32

arch6 4 256 64

arch7 4 512 32

arch8 4 512 64
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Figure 8. Speedup and data transfer reduction of Flexer com-

pared to the best static loop-order schedule

compared to the baseline. This result is caused by the per-

formance metric used during scheduling which is defined

as 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠𝑖𝑧𝑒 . With this

metric, the large benefit of lower-latency schedules comes

at a (slight) increase in the amount of transferred data. Note,

however, that the performance metric in the priority-based

list scheduler can easily be adjusted to particular goals. As

an example, Figure 9 (b) shows the generated schedules for

the two layers conv_3_1/2 with weighting reductions in

data transfers higher than performance improvements. The

resulting schedules do achieve a significant reduction in the

amount of data transferred at the expense of a much dimin-

ished performance improvement. Also for the end-to-end

network performance, the focus on data transfers only does

not seem desirable (Figure 9 (c)).
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Figure 9. Speedup and data transfer reduction of Flexer com-

pared to the best loop-order schedule for VGG16 on arch5

On-chip Flexer Loop-order
0.0

0.5

1.0

1.5

2.0

2.5

Conv 4 2 in VGG16 on arch6

On-chip Flexer Loop-order
0

1

2

3

4

Conv 3 1 1 in ResNet50 on arch6

# of OUTPUT Load+Store 1
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# of OUTPUT Load+Store 1

# of INPUT Load+Store 1 2 4 5 6 8

# of WEIGHT Load+Store 1 2 3 4 7

# of PSUM Load+Store 4

Original Size OUTPUT INPUT WEIGHT PSUM

Figure 10. Amount of transferred data and reload count for

each data type for on-chip, Flexer, and the best static loop-

order schedule

To understand how Flexer manages on-chip memory, Fig-

ure 10 visualizes the data movements between the off- and

on-chip memory for one layer from VGG16 and ResNet50,

respectively on arch6. The different types of data (input,

output, weights, and partial sums) are colored differently.

The saturation of the color indicates the number of times a

tile is moved from one memory to another. The bar on-chip
represents the best schedule for an unlimited on-chip mem-

ory, i.e., all data tiles are moved at most once. The height of

the bars represent the amount of data transferred.

0 2 4 6 8 latency
(100K cycles)

NPU0
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NPU2

NPU3

Loop-order scheduling

’IN’: [1, 1, 1, 1], ’WT’: [4], ’PS’: [1, 1, 1, 1]

0 1 2 3 4 5 latency
(100K cycles)
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Flexer scheduling

’IN’: [2, 1, 1], ’WT’: [3, 1], ’PS’: [1, 1, 1, 1]

’IN’: [1, 2, 1], ’WT’: [3, 1], ’PS’: [1, 1, 1, 1]

’IN’: [4], ’WT’: [1, 1, 1, 1], ’PS’: [1, 1, 1, 1]
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’IN’: [3, 1], ’WT’: [1, 1, 1, 1], ’PS’: [1, 1, 1, 1]

’IN’: [2, 1, 1], ’WT’: [1, 3], ’PS’: [1, 1, 1, 1]

Figure 11. Visualization of spatial data reuse between NPUs

of a single layer

We observe how the static loop-order schedules keep one

type of data on-chip: the schedule for conv_4_2 from VGG16

uses an input-stationary schedule, while the schedule for

conv_3_1_1 from ResNet50 keeps the partial sum on-chip.

Consequently, the other types of memory exhibit significant

data transfers with high reload counts. The regular structure

of the loop also dictates that all tiles of a given type are

reloaded the same number of times, i.e., there is no reload

variation for a given data type. The out-of-order schedules

generated by Flexer, on the other hand, contain different data

flow patterns that result in different reload counts for the

same type of data. More specifically, while single-core NPUs

only benefit from temporal reuse (from one operation to the

next) in the on-chip memory, multi-NPU architectures allow

data reuse both in the temporal and spatial (between NPUs)

dimension. The out-of-order schedules generated by Flexer
are able to exploit the best data reuse patterns for any given

situation, causing various reload pattern during execution

of a single layer.

Figure 11 visualizes spatial data reuse, i.e., simultaneous

reuse of data by multiple NPUs. Unsurprisingly, only one

type of data (WT) is shared in the stationary data flow. Flexer’s
out-of-order scheduler generates a number of data reuse

patterns. The different patterns reveal that different types

of data are shared during the execution of a single layer;

a characteristic of OoO schedules that is not possible with

loop-order schedules.

By modifying the priority function, list schedulers can be

tailored towards a given optimization goal. Figure 12 shows

the effect of four priority functions listed in Table 2 with

respect to the metric 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 × 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜 𝑓 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑟𝑒𝑑 𝑑𝑎𝑡𝑎
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Table 2. Different priority functions and memory manage-

ment policies

Priority1

Min transfer: Select the set that causes the mini-

mal amount of data movements

Priority2

Min spilling: Select the set that causes the lowest

amount of spilled data

MemPolicy1

First-fit spill: spill the first data block large

enough to hold the requested data

MemPolicy2

Small spill: repeatedly spill the smallest data

blocks until sufficient memory is available
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Figure 12. Performance of different priority and memory

management policies

(lower is better). All results are normalized to Flexer’s default
priority function discussed in Section 4. The results show

(1) that good memory management has a higher impact

than operation set selection and (2) that the default priority

function of Flexer achieves overall good results for different

networks and hardware configurations.

6 Related Work

As illustrated by Figure 1, the amount of data transferred

between off- and on-chip memory and the latency of a sched-

ule vary significantly on same hardware in dependence of

the execution schedule. Consequently, many works aim to

find the fastest schedule for a given hardware. Exploiting

the loop representation of a DNN layer, many prior works

try to find the best DNN schedule by selecting the optimal

tiling size and loop permutations.

A number of approaches employ self-tuning algorithms to

solve the scheduling problem. While ConfuciuX [13], Flex-

Tensor [26] and AutoTVM [2] use machine learning algo-

rithm, Ansor [25] and GAMMA [14] rely on genetic algo-

rithms to find the optimal schedule. Compared to genetic

algorithms, machine learning technique are better able to

avoid getting stuck in local minima; however, pruning the

enormous design space may cause the technique to miss the

best schedule. Genetic algorithm, on the other hand, are bet-

ter at covering the entire search space and are less at risk of

missing the best schedules compared to machine learing and

heuristics-based pruning. Interstellar [22], DMazeRunner [6]

and PolySA [5] explore more flexible loop structures through

various loop representations of DNN layers. CoSA [11] and

Vaidya et al. [21] generate an execution schedule for a DNN

in a relatively short time thanks to a constrained optimiza-

tion solver. All of the above approches, however, are based

on fixed loop-order schedules that risk missing better sched-

ule opportunities. The presented OoO scheduling technique

is not bound by a loop order and schedules operations based

on an analysis of the data-flow graph of a layer.

Several works present scheduling techniques for multi-

NPUs or scalable accelerators. In TANGRAM [7], the authors

propose an algorithm that reduces redundant operations

and data duplication between cores, however, the gener-

ated schedules still adhere to loop-order schedules. On the

other hand, Zheng et al. [27] propose an atomic dataflow in

which the tiled convolution is scheduled in accordance to a

pre-defined priority rule to maximize data reuse while mini-

mizing latency. However, Zheng et al. [27] does not explore

all possible tilings and this risks missing better schedules.

Additionally, Zheng et al. [27] base the priority of operations

with heuristics while our work considers the actual memory

status and overhead.

In contrast, the presented out-of-order scheduler com-

bined with its memory management techniques and oper-

ation set pruing allow Flexer to explore new, irregular exe-
cution schedules that achieve significant performance im-

provements over fixed loop-order schedules.

7 Conclusion

This work presented Flexer, a DNN scheduling technique

based on out-of-order scheduling that can exploit oppor-

tunity missed by regular loop-structure schedules. Flexer
selects the best combination of parallel operations from a

list of sets based on a priority function similar to traditional

priority-based list schedulers. Results with various deep neu-

ral networks on different multi-NPU architectures show that

Flexer is able to generate significantly more efficient execu-

tion schedules than state-of-the-art loop-based schedulers.
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