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ABSTRACT
Despite recent attempts to reduce the number of pa-

rameters of large language models (LLMs), their pa-
rameter data is still too large to fit into a single GPU.
With the emergence of throughput-oriented tasks, high-
throughput generative inference frameworks for LLMs
on a single commodity GPU leverage GPU, DRAM, and
NVMe to run inference on large models with terabytes
of data. Our analysis of the technique shows that the
runtime is dominated by data transfers of the weights,
leading to a low utilization of both the GPU and the
CPU. In this paper, we increase the throughput and de-
crease the total latency of state-of-the-art frameworks by
including the CPU as a compute device and overlapping
computations on the CPU with GPU data transfers. Our
work shows a promising improvement of around 40% in
throughput and total latency, with potential room for
further improvements.
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• Computing methodologies → Parallel algorithms;
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1 INTRODUCTION
Today, deep learning is applied to a wide variety of

tasks [2, 4, 9]. One of the most researched and recognized
fields is natural language processing [6, 10, 11]. Recent
large language models (LLMs) demonstrate excellent
performance across a wide range of tasks [5, 15]. The
quest for better and better results has lead to an explo-
sion of the parameter data required by state-of-the-art
LLMs [8, 14]. Attempts to reduce the model size by using
an extremely high number of batches per iteration [16]
resulted in a smaller number of parameters while main-
taining a certain level of accuracy. Nevertheless, such
models are still too large to fit into a single GPU. For
example, to accommodate the 700 GB of GPT-3’s pa-
rameters [6], eight NVIDIA H100 GPUs are required.
Systems that fit eight high-end GPUs are not easily
available to individuals and also companies. Putting the
high-memory requirements and the cost aside, accom-
modating the entire model into a number of GPUs and
running them in a model-parallel and pipeline-parallel
fashion is suitable for latency-sensitive tasks. Indeed,
many the tasks such as data wrangling, information ex-
traction, and benchmarks are throughput-oriented and
feed millions of tokens in batches to the models. A high
numbers of batches increases the overall throughput at
the expense of latency.

Recent studies attempt to balance the latency-through-
put trade-off by reducing the resource requirements for
LLM inference with a throughput-oriented process. Sev-
eral existing throughput-oriented frameworks, such as
ZeRO-Inference [3], HuggingFace Accelerate [1], and
FlexGen [13], leverage the memory hierarchy and in-
crease the number of batches during inference to improve
the throughput. ZeRO-Inference transfers weigths of the
model to the system DRAM or NVMe and utilizes other
optimizations to minimize the latency of transferring
layer weights from the DRAM or NVMe memory to
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the GPU memory. HuggingFace Accelerate focuses on
training methods and efficiently accumulates gradients
without affecting the process. HuggingFace Accelerate
also supports inference using the same technique used
during training, where a hook mechanism sequentially
moves the next layer’s weights into the GPU memory,
much like the process in ZeRO-Inference. However, ZeRO-
Inference and HuggingFace Accelerate do not achieve
acceptable throughput on a single GPU, especially at
small batch sizes. FlexGen improves the aforementioned
frameworks by expanding the tensor placement and com-
putation delegation search space, while also allowing
manual configuration options of the ratios for weights,
key-value cache, and intermediate activation.

Existing throughput-oriented frameworks focus on hid-
ing the data transfer time with layer prefetches and ef-
ficient GPU I/O computation, but do not exploit the
opportunity to use the CPUs for computation. While
GPUs are orders of magnitudes faster than CPUs during
computation, the weights of LLMs are so large that the
weight transfers often dominate the execution time of
LLM inference on single commodity GPU system. In this
paper, we add employ the CPU as an additional compute
device to seize opportunities of overlapping communi-
cation with computations to improve inference latency.
The main idea is to execute the first half of a decoder
layer’s computations on the CPUs while the weights for
the second half of the decoder layer are transferred to
the GPU, thereby overlapping computation with data
transfers and reducing the weight transfer overhead. To
support efficient offloading of some part of the workload
to the CPU, we need to consider the different characteris-
tics of the workload for different batch sizes and different
phases of LLM inference. We carefully determine which
data should remain in DRAM and is processed by the
CPUs while we send the remainder of the data to the
GPUs and show that the latency of throughput-oriented
workload with the OPT-30B model [18] can be reduced
by up to 40%.

The remainder of this paper is organized as follows.
Section 2 discusses the large language models and related
work. The CPU offloading technique is presented in
Section 3 and evaluated in Section 4. Section 5, finally,
concludes this paper.

2 BACKGROUND AND RELATED
WORK

Large language models. Most of today’s LLMs are
based on the decoder architecture [17], which is com-
prised of layers of layer normalization, multi-head atten-
tion, another layer normalization, and a feed-forward
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Figure 1: The OPT model decoder layer architec-
ture.

network. As shown in Figure 1, the majority of the
workload is attributed to matrix multiplications in the
multi-head attention and the feed-forward network. All
matrix multiplications with a single arrow as an input
require a weight tensor. Multi-head attention and the
feed-forward network require four and two weight tensors,
respectively. The multi-head attention weights are in the
shape of (embedding dimension, embedding dimension),
and the feed-forward network has two weights composed
of (embedding dimension, intermediate dimension) and
(intermediate dimension, embedding dimension). These
weights are not small in size. In the OPT-30B model [18],
the embedding dimension is set to 7168 and the interme-
diate dimension to 28672, making a single layer contain
around 616 million parameters and require 1.2GB of
memory with FP16 precision.

All weights are reused in every iteration. The user can
decide the number of iterations that take place by speci-
fying how many output tokens the model should generate.
One output token is generated per iteration, and the
generated token is concatenated with the input tokens
and fed into the network as input for the next iteration.
This means that there are redundant computations along
the way since many of the inputs are reused in future
iterations. The key-value cache technique can be used
to remove such redundant computations [7]. Multi-head
attention is comprised of three matrix multiplications
at the start, and the outcomes of these computations
are named query, key, and value respectively. The first
iteration computes the matrix multiplications with all
input tokens and creates the initial key and value matri-
ces called the key-value cache. After the key-value cache
has been created, it can be reused in the next iteration,
thus requiring only the output token as an input. The
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output token will create another set of key and value ma-
trices which are concatenated to the previous key-value
cache. The first iteration that creates the key-value cache
is called the prefill phase, and the following iterations
are called the generation phase. The resulting key-value
cache has a dimension of (batches, # of input tokens +
# of generated tokens, embedding dimension) for both
key and value matrices. The key-value cache is not small
in size. For example, with 512 input tokens and 32 itera-
tions of the OPT-30B model using FP16 precision, the
key-value cache requires around 16MB per batch and
multi-head operation. Since there is multi-head attention
in every layer, a single batch requires around 750MB of
key-value cache memory in the OPT-30B model.

FlexGen. Existing throughput-oriented works such
as ZeRO-Inference [3] and HuggingFace Accelerate [1]
support offloading large models to DRAM and NVMe.
However, inefficient I/O scheduling and tensor place-
ment hurt throughput performance. FlexGen [13] alle-
viates these shortcomings by formally defining a search
space of possible offloading strategies that considers the
computation schedule, tensor placements, and computa-
tion delegation. FlexGen leverages the zigzag scheduling
methodology, which does not finish the entire inference
process to completion, but rather divides the batches
into smaller ones and runs inference one small batch at
a time. For example, if there are 100 batches to compute
in total and the user decides to run 10 batches at a
time, other related works finish the inference process
of 10 batches first, then compute the next 10 batches,
and so on. On the other hand, FlexGen’s zigzag sched-
uling transfers the weights of an operation (multi-head
attention or feed-forward network) first, computes the
results for all 100 batches by keeping 10 batches at a time
within the GPU, and then proceeds forward. Using the
zigzag scheduling technique, FlexGen tries to find opti-
mal weight, intermediate activation, and key-value cache
tensor placements for optimal performance. In addition,
FlexGen lets the user choose the weight, key-value cache,
and intermediate activation tensor placements during
inference so that the user can try out different combina-
tions of tensor placements, and also configure how many
batches at a time can be placed in VRAM.

3 CPU OFFLOADING
Motivation. Figure 2 plots the latency breakdown of

pure data transfers, overlapping transfers with compu-
tation, and pure computation for the OPT-30B model
using FlexGen’s double-buffering technique with single
pipeline and the hardware configuration given in Sec-
tion 4. PRE and GEN denote prefill and generation,

20% 40% 60% 80% 100%
OPT-30B Generation Phase Breakdown (in %)

GEN (1)
GEN (10)
GEN (20)
GEN (30)

PRE (1)
PRE (10)
PRE (20)
PRE (30)

Data transfer Overlapped Computation

Figure 2: FlexGen OPT-30B workload breakdown.
PRE and GEN denotes prefill and generation re-
spectively, and the number in the bracket denoted
number of batches.
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Figure 3: Latency comparison between multi-
head attention computation latency with CPUs
and feed-forward network weight transfer latency.

respectively, and the number of batches is shown within
the bracket. The prefill and generation phases exhibit
different characteristics. Both are dominated by the data
transfer overhead when the batch size is small. Only the
prefill phase is quickly dominated by the computation
latency as the number of batches increases. The time
when computation can be overlapped with data transfers
is shown in gray. We observe that the GPU computation
latency is too short to hide the data transfer latency dur-
ing the generation phase, leading to the generation phase
being dominated by the latency of the data transfers.

The observations of FlexGen’s latency breakdown pro-
vide the motivation for this work, namely, to offload
parts of the computation to the CPUs to decrease the
latency of the generation phase. Since the weights of
the key-value cache are not small and increase with the
number of batches, we selected multi-head attention to
be offloaded to the CPUs to decrease the data trans-
fer overhead and the VRAM requirements to store the
key-value cache.

The amount of computation offloaded to the CPUs
must be carefully chosen since the CPUs are orders of
magnitudes slower than the GPU. An inefficient work
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Figure 4: Gantt charts comparing GPU-only workload scenarios with CPU-GPU overlapping workload
scenarios. Crosses represent the weight transfers and the computations of multi-head attention, and
circles represent the weight transfers and the computations of the feed-forward network.

division could end up being worse than the original
implementation. To this end, we compare the CPU com-
putation latency of the multi-head attention against the
feed-forward network weight transfers using the same
hardware settings as described in Section 4. Figure 3
shows that the multi-head attention latency executed
on the CPUs is smaller than the feed-forward network
data transfers latency only for a small number of batches.
Thus, to overlap computations with communication as
much as possible, it is imperative to offload some feed-
forward network workload to the CPUs during small-
batch inference, and vice versa in large-batch inference.

Implementation. Figure 4 shows the possible two
scenarios of overlapping CPU computations and data
transfers compared to the original workload carried out
by FlexGen. The core idea is to overlap the computa-
tion of multi-head attention in the CPUs with the data
transfer of the feed-forward network to the GPU since
the multi-head attention workload is smaller than that
of the feed-forward network’s. In a small-batch scenario,
the multi-head attention computation in the CPU can
be faster than the feed-forward weight transfer latency,
so we can push the overlap further by breaking up the
first matrix multiplication of the feed-forward network
and computing it as well during the data transfer. The
weights are divided along the columns, and the output
computed in the CPU is concatenated with the output
computed in the GPU. Breaking up and computing parts
of the feed-forward network in CPUs can result in smaller
data transfers to the GPU and also fewer computations
inside the GPU.

However, in large-batch scenarios, the multi-head at-
tention computation can take longer than the data trans-
fers of the feed-forward network, which would result in
the CPU performance becoming the bottleneck. Instead
of breaking up the feed-forward network, we must di-
vide the multi-head attention layer workload, send part
of the multi-head attention weights in addition to the
feed-forward networks’, and overlap the computation

with the added data transfers as well. In this work, we
send the weights used in the last or the last two matrix
multiplications of the multi-head attention to the GPU
depending on the workload, and overlap communication
with computation as much as possible without having the
CPU computation become the bottleneck and increase
GPU idle time.

The workload can be divided at different points de-
pending on the size of the input in the generation phase,
but not in the prefill phase. The generation phase using
the key-value cache technique only takes one token per
batch as an input, whereas the initial input consists of
all input tokens making the computations heavier in the
prefill phase. For example, FlexGen’s benchmark’ input
token length is 512, i.e., the amount of computations in
the prefill phase is 512 times larger than in the gener-
ation phase. Applying the offloading techniques of the
generation to the prefill phase would lead to a severe
drop in throughput, and thus we choose not to offload
any work to the CPUs in the prefill phase.

Another consideration is that executing the prefill
phase in the GPU may trigger data type conversions
if the CPUs do not support FP16 precision since the
model weights are stored in FP16 precision. We try to
first reduce this cost by keeping all model weights in
FP16 and whenever a multi-head attention operation
finishes its prefill phase, the weights that are required in
the CPU computations are converted from FP16 to FP32.
This procedure is also applied to the newly-generated
key-value cache so that it can be later used during the
generation phase with the CPU. Note that this limitation
can be avoided with a modern CPUs that support FP16.

4 EVALUATION
Configuration. We have implemented the presented

technique into FlexGen [13]. FlexGen is based on Py-
Torch [12]. We use an NVIDIA RTX 2080 Ti with an
Intel Core i5-10400 CPU for this evaluation. The work-
load is FlexGen’s default workload with 512 input tokens
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Batch
Size

FlexGen (0-100) FlexGen (20-80) CPU Offload
Throughput Latency Throughput Latency Throughput Latency
(tokens/s) PRE + GEN (s) (tokens/s) PRE + GEN (s) (tokens/s) PRE + GEN (s)

1 0.204 5.1 + 151.6 0.213 4.8 + 145.1 0.328 5.3 + 92.1
10 1.711 8.2 + 178.8 1.825 8.1 + 167.2 1.928 12.3 + 153.6
20 2.931 12.4 + 205.9 3.106 12.4 + 193.6 2.818 19.7 + 207.4
30 3.827 18.5 + 232.3 4.011 18.5 + 220.8 3.761 25.2 + 230.1

Table 1: Throughput and latency comparison between FlexGen and CPU-offload-enabled inference.

and 32 output tokens generated per batch. We chose the
OPT-30B model to test the presented technique because
the model does not fit into the GPU’s VRAM and thus
leaves room for optimizations by overlapping the host-
to-device data transfers with CPU computation in the
inference process.

Results. Table 1 shows the result of running 1 to 30
batches for two different FlexGen memory configuration
and our work. (0-100) and (20-80) denote the config-
uration used during the FlexGen run and refer to the
percentage of the weights being pinned in GPU and CPU,
respectively. Our work, regardless of the batch size, pins
all tensors (weights, key-value cache, and intermediate
activation) in the DRAM. We measure the throughput
and the latency of running a certain batch size. The
latency columns show the latencies of the prefill and the
generation phase.

We observe a latency increase in all prefill phases when
using the CPU offloading technique caused by the data
type conversion of the computed key-value cache. Larger
batches create a bigger key-value cache, thus the gap
between FlexGen’s prefill phase and ours approach in-
creases linearly. Overall, we observe a 40% improvement
with a batch size of 1 thanks to offloading the multi-
head attention and parts of the feed-forward network
to the CPUs. However, with larger batches, multi-head
attention computations are only partially overlapped
with data transfers due to CPU performance limitations
and result in similar performance of the presented ap-
proach to FlexGen. We believe that 18% reduced PCIe
bandwidth throughput caused by memory bandwidth
contention is the root cause of this problem, prolonging
both the data transfers and the CPU computation la-
tency. Improving the PCIe bandwidth usage and CPU
inference latency would result in higher throughput in
huge batches as well, and we leave this for future work.

5 CONCLUSION
Large language models are widely applied due to their

state-of-the-art performance, and their tasks may re-
quire them to be both latency-sensitive and throughput-
oriented. Recent throughput-oriented frameworks on a

single commodity GPU are dominated by data transfers
during their inference process, therefore presenting an
opportunity to overlap CPU computations with GPU
data transfers. In this paper, we showed that efficiently
overlapping CPU computations with host-to-device data
transfers can increase overall throughput. Whilst our
work shows a promising improvement of around 40%
for small batches, there are some areas where we can
further improve to gain more performance with larger
batches, and potentially for pipelined workloads within
a single-GPU as well.
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