
Improving Throughput-oriented Generative Inference
with CPUs

Daon Park
daon@csap.snu.ac.kr

Seoul National University
Seoul, Republic of Korea

Sungbin Jo
goranmoomin@snu.ac.kr

Seoul National University
Seoul, Republic of Korea

Bernhard Egger
bernhard@csap.snu.ac.kr
Seoul National University
Seoul, Republic of Korea

ABSTRACT
Despite recent attempts to reduce the number of pa-

rameters of large language models (LLMs), their pa-
rameter data is still too large to fit into a single GPU.
With the emergence of throughput-oriented tasks, high-
throughput generative inference frameworks for LLMs
on a single commodity GPU leverage GPU, DRAM, and
NVMe to run inference on large models with terabytes
of data. Our analysis of the technique shows that the
runtime is dominated by data transfers of the weights,
leading to a low utilization of both the GPU and the
CPU. In this paper, we increase the throughput and de-
crease the total latency of state-of-the-art frameworks by
including the CPU as a compute device and overlapping
computations on the CPU with GPU data transfers. Our
work shows a promising improvement of around 40% in
throughput and total latency, with potential room for
further improvements.

CCS CONCEPTS
• Computing methodologies → Parallel algorithms;
Natural language generation.

KEYWORDS
Large language models, latency reduction, CPU offload-
ing
ACM Reference Format:
Daon Park, Sungbin Jo, and Bernhard Egger. 2023. Improv-
ing Throughput-oriented Generative Inference with CPUs.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APSys ’23, August 24–25, 2023, Seoul, Republic of Korea
© 2023 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 979-8-4007-0305-8/23/08. . . $15.00
https://doi.org/10.1145/3609510.3609815

In 14th ACM SIGOPS Asia-Pacific Workshop on Systems
(APSys ’23), August 24–25, 2023, Seoul, Republic of Korea.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3609510.3609815

1 INTRODUCTION
Today, deep learning is applied to a wide variety of

tasks [2, 4, 9]. One of the most researched and recognized
fields is natural language processing [6, 10, 11]. Recent
large language models (LLMs) demonstrate excellent
performance across a wide range of tasks [5, 15]. The
quest for better and better results has lead to an explo-
sion of the parameter data required by state-of-the-art
LLMs [8, 14]. Attempts to reduce the model size by using
an extremely high number of batches per iteration [16]
resulted in a smaller number of parameters while main-
taining a certain level of accuracy. Nevertheless, such
models are still too large to fit into a single GPU. For
example, to accommodate the 700 GB of GPT-3’s pa-
rameters [6], eight NVIDIA H100 GPUs are required.
Systems that fit eight high-end GPUs are not easily
available to individuals and also companies. Putting the
high-memory requirements and the cost aside, accom-
modating the entire model into a number of GPUs and
running them in a model-parallel and pipeline-parallel
fashion is suitable for latency-sensitive tasks. Indeed,
many the tasks such as data wrangling, information ex-
traction, and benchmarks are throughput-oriented and
feed millions of tokens in batches to the models. A high
numbers of batches increases the overall throughput at
the expense of latency.

Recent studies attempt to balance the latency-through-
put trade-off by reducing the resource requirements for
LLM inference with a throughput-oriented process. Sev-
eral existing throughput-oriented frameworks, such as
ZeRO-Inference [3], HuggingFace Accelerate [1], and
FlexGen [13], leverage the memory hierarchy and in-
crease the number of batches during inference to improve
the throughput. ZeRO-Inference transfers weigths of the
model to the system DRAM or NVMe and utilizes other
optimizations to minimize the latency of transferring
layer weights from the DRAM or NVMe memory to

37

https://orcid.org/0000-0003-2312-3049
https://orcid.org/0009-0002-4844-5378
https://orcid.org/0000-0002-6645-6161
https://doi.org/10.1145/3609510.3609815
https://doi.org/10.1145/3609510.3609815
https://doi.org/10.1145/3609510.3609815
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609510.3609815&domain=pdf&date_stamp=2023-08-24

APSys ’23, August 24–25, 2023, Seoul, Republic of Korea Park et al.

the GPU memory. HuggingFace Accelerate focuses on
training methods and efficiently accumulates gradients
without affecting the process. HuggingFace Accelerate
also supports inference using the same technique used
during training, where a hook mechanism sequentially
moves the next layer’s weights into the GPU memory,
much like the process in ZeRO-Inference. However, ZeRO-
Inference and HuggingFace Accelerate do not achieve
acceptable throughput on a single GPU, especially at
small batch sizes. FlexGen improves the aforementioned
frameworks by expanding the tensor placement and com-
putation delegation search space, while also allowing
manual configuration options of the ratios for weights,
key-value cache, and intermediate activation.

Existing throughput-oriented frameworks focus on hid-
ing the data transfer time with layer prefetches and ef-
ficient GPU I/O computation, but do not exploit the
opportunity to use the CPUs for computation. While
GPUs are orders of magnitudes faster than CPUs during
computation, the weights of LLMs are so large that the
weight transfers often dominate the execution time of
LLM inference on single commodity GPU system. In this
paper, we add employ the CPU as an additional compute
device to seize opportunities of overlapping communi-
cation with computations to improve inference latency.
The main idea is to execute the first half of a decoder
layer’s computations on the CPUs while the weights for
the second half of the decoder layer are transferred to
the GPU, thereby overlapping computation with data
transfers and reducing the weight transfer overhead. To
support efficient offloading of some part of the workload
to the CPU, we need to consider the different characteris-
tics of the workload for different batch sizes and different
phases of LLM inference. We carefully determine which
data should remain in DRAM and is processed by the
CPUs while we send the remainder of the data to the
GPUs and show that the latency of throughput-oriented
workload with the OPT-30B model [18] can be reduced
by up to 40%.

The remainder of this paper is organized as follows.
Section 2 discusses the large language models and related
work. The CPU offloading technique is presented in
Section 3 and evaluated in Section 4. Section 5, finally,
concludes this paper.

2 BACKGROUND AND RELATED
WORK

Large language models. Most of today’s LLMs are
based on the decoder architecture [17], which is com-
prised of layers of layer normalization, multi-head atten-
tion, another layer normalization, and a feed-forward

GEMM GEMM GEMM

GEMM

Scale + Masking +
Softmax

GEMM

GEMM

Non-linear (ReLU, etc.)

GEMM

GEMM

Multi-head Attention

Layer Normalization

Feed-forward Network

Layer Normalization

Figure 1: The OPT model decoder layer architec-
ture.

network. As shown in Figure 1, the majority of the
workload is attributed to matrix multiplications in the
multi-head attention and the feed-forward network. All
matrix multiplications with a single arrow as an input
require a weight tensor. Multi-head attention and the
feed-forward network require four and two weight tensors,
respectively. The multi-head attention weights are in the
shape of (embedding dimension, embedding dimension),
and the feed-forward network has two weights composed
of (embedding dimension, intermediate dimension) and
(intermediate dimension, embedding dimension). These
weights are not small in size. In the OPT-30B model [18],
the embedding dimension is set to 7168 and the interme-
diate dimension to 28672, making a single layer contain
around 616 million parameters and require 1.2GB of
memory with FP16 precision.

All weights are reused in every iteration. The user can
decide the number of iterations that take place by speci-
fying how many output tokens the model should generate.
One output token is generated per iteration, and the
generated token is concatenated with the input tokens
and fed into the network as input for the next iteration.
This means that there are redundant computations along
the way since many of the inputs are reused in future
iterations. The key-value cache technique can be used
to remove such redundant computations [7]. Multi-head
attention is comprised of three matrix multiplications
at the start, and the outcomes of these computations
are named query, key, and value respectively. The first
iteration computes the matrix multiplications with all
input tokens and creates the initial key and value matri-
ces called the key-value cache. After the key-value cache
has been created, it can be reused in the next iteration,
thus requiring only the output token as an input. The

38

Improving Throughput-oriented Generative Inference with CPUs APSys ’23, August 24–25, 2023, Seoul, Republic of Korea

output token will create another set of key and value ma-
trices which are concatenated to the previous key-value
cache. The first iteration that creates the key-value cache
is called the prefill phase, and the following iterations
are called the generation phase. The resulting key-value
cache has a dimension of (batches, # of input tokens +
of generated tokens, embedding dimension) for both
key and value matrices. The key-value cache is not small
in size. For example, with 512 input tokens and 32 itera-
tions of the OPT-30B model using FP16 precision, the
key-value cache requires around 16MB per batch and
multi-head operation. Since there is multi-head attention
in every layer, a single batch requires around 750MB of
key-value cache memory in the OPT-30B model.

FlexGen. Existing throughput-oriented works such
as ZeRO-Inference [3] and HuggingFace Accelerate [1]
support offloading large models to DRAM and NVMe.
However, inefficient I/O scheduling and tensor place-
ment hurt throughput performance. FlexGen [13] alle-
viates these shortcomings by formally defining a search
space of possible offloading strategies that considers the
computation schedule, tensor placements, and computa-
tion delegation. FlexGen leverages the zigzag scheduling
methodology, which does not finish the entire inference
process to completion, but rather divides the batches
into smaller ones and runs inference one small batch at
a time. For example, if there are 100 batches to compute
in total and the user decides to run 10 batches at a
time, other related works finish the inference process
of 10 batches first, then compute the next 10 batches,
and so on. On the other hand, FlexGen’s zigzag sched-
uling transfers the weights of an operation (multi-head
attention or feed-forward network) first, computes the
results for all 100 batches by keeping 10 batches at a time
within the GPU, and then proceeds forward. Using the
zigzag scheduling technique, FlexGen tries to find opti-
mal weight, intermediate activation, and key-value cache
tensor placements for optimal performance. In addition,
FlexGen lets the user choose the weight, key-value cache,
and intermediate activation tensor placements during
inference so that the user can try out different combina-
tions of tensor placements, and also configure how many
batches at a time can be placed in VRAM.

3 CPU OFFLOADING
Motivation. Figure 2 plots the latency breakdown of

pure data transfers, overlapping transfers with compu-
tation, and pure computation for the OPT-30B model
using FlexGen’s double-buffering technique with single
pipeline and the hardware configuration given in Sec-
tion 4. PRE and GEN denote prefill and generation,

20% 40% 60% 80% 100%
OPT-30B Generation Phase Breakdown (in %)

GEN (1)
GEN (10)
GEN (20)
GEN (30)

PRE (1)
PRE (10)
PRE (20)
PRE (30)

Data transfer Overlapped Computation

Figure 2: FlexGen OPT-30B workload breakdown.
PRE and GEN denotes prefill and generation re-
spectively, and the number in the bracket denoted
number of batches.

0 100 200 300
Latency (in ms)

FFN HtoD

1 Batch

10 Batches

20 Batches

30 Batches

Computation Latency Data transfer

Figure 3: Latency comparison between multi-
head attention computation latency with CPUs
and feed-forward network weight transfer latency.

respectively, and the number of batches is shown within
the bracket. The prefill and generation phases exhibit
different characteristics. Both are dominated by the data
transfer overhead when the batch size is small. Only the
prefill phase is quickly dominated by the computation
latency as the number of batches increases. The time
when computation can be overlapped with data transfers
is shown in gray. We observe that the GPU computation
latency is too short to hide the data transfer latency dur-
ing the generation phase, leading to the generation phase
being dominated by the latency of the data transfers.

The observations of FlexGen’s latency breakdown pro-
vide the motivation for this work, namely, to offload
parts of the computation to the CPUs to decrease the
latency of the generation phase. Since the weights of
the key-value cache are not small and increase with the
number of batches, we selected multi-head attention to
be offloaded to the CPUs to decrease the data trans-
fer overhead and the VRAM requirements to store the
key-value cache.

The amount of computation offloaded to the CPUs
must be carefully chosen since the CPUs are orders of
magnitudes slower than the GPU. An inefficient work

39

APSys ’23, August 24–25, 2023, Seoul, Republic of Korea Park et al.

CPU

PCIe

GPU

(a) GPU-only workload in Flex-
Gen.

CPU

PCIe

GPU

(b) Small-batch overlap scenario.

CPU

PCIe

GPU

(c) Large-batch overlap scenario.

Figure 4: Gantt charts comparing GPU-only workload scenarios with CPU-GPU overlapping workload
scenarios. Crosses represent the weight transfers and the computations of multi-head attention, and
circles represent the weight transfers and the computations of the feed-forward network.

division could end up being worse than the original
implementation. To this end, we compare the CPU com-
putation latency of the multi-head attention against the
feed-forward network weight transfers using the same
hardware settings as described in Section 4. Figure 3
shows that the multi-head attention latency executed
on the CPUs is smaller than the feed-forward network
data transfers latency only for a small number of batches.
Thus, to overlap computations with communication as
much as possible, it is imperative to offload some feed-
forward network workload to the CPUs during small-
batch inference, and vice versa in large-batch inference.

Implementation. Figure 4 shows the possible two
scenarios of overlapping CPU computations and data
transfers compared to the original workload carried out
by FlexGen. The core idea is to overlap the computa-
tion of multi-head attention in the CPUs with the data
transfer of the feed-forward network to the GPU since
the multi-head attention workload is smaller than that
of the feed-forward network’s. In a small-batch scenario,
the multi-head attention computation in the CPU can
be faster than the feed-forward weight transfer latency,
so we can push the overlap further by breaking up the
first matrix multiplication of the feed-forward network
and computing it as well during the data transfer. The
weights are divided along the columns, and the output
computed in the CPU is concatenated with the output
computed in the GPU. Breaking up and computing parts
of the feed-forward network in CPUs can result in smaller
data transfers to the GPU and also fewer computations
inside the GPU.

However, in large-batch scenarios, the multi-head at-
tention computation can take longer than the data trans-
fers of the feed-forward network, which would result in
the CPU performance becoming the bottleneck. Instead
of breaking up the feed-forward network, we must di-
vide the multi-head attention layer workload, send part
of the multi-head attention weights in addition to the
feed-forward networks’, and overlap the computation

with the added data transfers as well. In this work, we
send the weights used in the last or the last two matrix
multiplications of the multi-head attention to the GPU
depending on the workload, and overlap communication
with computation as much as possible without having the
CPU computation become the bottleneck and increase
GPU idle time.

The workload can be divided at different points de-
pending on the size of the input in the generation phase,
but not in the prefill phase. The generation phase using
the key-value cache technique only takes one token per
batch as an input, whereas the initial input consists of
all input tokens making the computations heavier in the
prefill phase. For example, FlexGen’s benchmark’ input
token length is 512, i.e., the amount of computations in
the prefill phase is 512 times larger than in the gener-
ation phase. Applying the offloading techniques of the
generation to the prefill phase would lead to a severe
drop in throughput, and thus we choose not to offload
any work to the CPUs in the prefill phase.

Another consideration is that executing the prefill
phase in the GPU may trigger data type conversions
if the CPUs do not support FP16 precision since the
model weights are stored in FP16 precision. We try to
first reduce this cost by keeping all model weights in
FP16 and whenever a multi-head attention operation
finishes its prefill phase, the weights that are required in
the CPU computations are converted from FP16 to FP32.
This procedure is also applied to the newly-generated
key-value cache so that it can be later used during the
generation phase with the CPU. Note that this limitation
can be avoided with a modern CPUs that support FP16.

4 EVALUATION
Configuration. We have implemented the presented

technique into FlexGen [13]. FlexGen is based on Py-
Torch [12]. We use an NVIDIA RTX 2080 Ti with an
Intel Core i5-10400 CPU for this evaluation. The work-
load is FlexGen’s default workload with 512 input tokens

40

Improving Throughput-oriented Generative Inference with CPUs APSys ’23, August 24–25, 2023, Seoul, Republic of Korea

Batch
Size

FlexGen (0-100) FlexGen (20-80) CPU Offload
Throughput Latency Throughput Latency Throughput Latency
(tokens/s) PRE + GEN (s) (tokens/s) PRE + GEN (s) (tokens/s) PRE + GEN (s)

1 0.204 5.1 + 151.6 0.213 4.8 + 145.1 0.328 5.3 + 92.1
10 1.711 8.2 + 178.8 1.825 8.1 + 167.2 1.928 12.3 + 153.6
20 2.931 12.4 + 205.9 3.106 12.4 + 193.6 2.818 19.7 + 207.4
30 3.827 18.5 + 232.3 4.011 18.5 + 220.8 3.761 25.2 + 230.1

Table 1: Throughput and latency comparison between FlexGen and CPU-offload-enabled inference.

and 32 output tokens generated per batch. We chose the
OPT-30B model to test the presented technique because
the model does not fit into the GPU’s VRAM and thus
leaves room for optimizations by overlapping the host-
to-device data transfers with CPU computation in the
inference process.

Results. Table 1 shows the result of running 1 to 30
batches for two different FlexGen memory configuration
and our work. (0-100) and (20-80) denote the config-
uration used during the FlexGen run and refer to the
percentage of the weights being pinned in GPU and CPU,
respectively. Our work, regardless of the batch size, pins
all tensors (weights, key-value cache, and intermediate
activation) in the DRAM. We measure the throughput
and the latency of running a certain batch size. The
latency columns show the latencies of the prefill and the
generation phase.

We observe a latency increase in all prefill phases when
using the CPU offloading technique caused by the data
type conversion of the computed key-value cache. Larger
batches create a bigger key-value cache, thus the gap
between FlexGen’s prefill phase and ours approach in-
creases linearly. Overall, we observe a 40% improvement
with a batch size of 1 thanks to offloading the multi-
head attention and parts of the feed-forward network
to the CPUs. However, with larger batches, multi-head
attention computations are only partially overlapped
with data transfers due to CPU performance limitations
and result in similar performance of the presented ap-
proach to FlexGen. We believe that 18% reduced PCIe
bandwidth throughput caused by memory bandwidth
contention is the root cause of this problem, prolonging
both the data transfers and the CPU computation la-
tency. Improving the PCIe bandwidth usage and CPU
inference latency would result in higher throughput in
huge batches as well, and we leave this for future work.

5 CONCLUSION
Large language models are widely applied due to their

state-of-the-art performance, and their tasks may re-
quire them to be both latency-sensitive and throughput-
oriented. Recent throughput-oriented frameworks on a

single commodity GPU are dominated by data transfers
during their inference process, therefore presenting an
opportunity to overlap CPU computations with GPU
data transfers. In this paper, we showed that efficiently
overlapping CPU computations with host-to-device data
transfers can increase overall throughput. Whilst our
work shows a promising improvement of around 40%
for small batches, there are some areas where we can
further improve to gain more performance with larger
batches, and potentially for pipelined workloads within
a single-GPU as well.

REFERENCES
[1] [n. d.]. HuggingFace Accelerate. https://huggingface.co/

docs/accelerate/index
[2] David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon

Denman, Clinton Fookes, and Lars Petersson. 2021. Graph-
based deep learning for medical diagnosis and analysis: past,
present and future. Sensors 21, 14 (2021), 4758.

[3] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia
Zhang, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase, et al.
2022. Deepspeed inference: Enabling efficient inference of
transformer models at unprecedented scale. arXiv preprint
arXiv:2207.00032 (2022).

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark
Liao. 2020. Yolov4: Optimal speed and accuracy of object
detection. arXiv preprint arXiv:2004.10934 (2020).

[5] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
2021. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258 (2021).

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020.
Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[7] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,
Quoc V Le, and Ruslan Salakhutdinov. 2019. Transformer-
xl: Attentive language models beyond a fixed-length context.
arXiv preprint arXiv:1901.02860 (2019).

[8] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. 2023.
Palm-e: An embodied multimodal language model. arXiv
preprint arXiv:2303.03378 (2023).

41

https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/accelerate/index

APSys ’23, August 24–25, 2023, Seoul, Republic of Korea Park et al.

[9] Wookey Lee, Jessica Jiwon Seong, Busra Ozlu, Bong Sup
Shim, Azizbek Marakhimov, and Suan Lee. 2021. Biosignal
sensors and deep learning-based speech recognition: A review.
Sensors 21, 4 (2021), 1399.

[10] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki
Hayashi, and Graham Neubig. 2023. Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural
language processing. Comput. Surveys 55, 9 (2023), 1–35.

[11] OpenAI. 2023. GPT-4 Technical Report.
arXiv:2303.08774 [cs.CL]

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. Pytorch:
An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32 (2019).

[13] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li,
Max Ryabinin, Daniel Y Fu, Zhiqiang Xie, Beidi Chen, Clark
Barrett, Joseph E Gonzalez, et al. 2023. High-throughput
generative inference of large language models with a single
gpu. arXiv preprint arXiv:2303.06865 (2023).

[14] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick
LeGresley, Jared Casper, and Bryan Catanzaro. 2019.

Megatron-lm: Training multi-billion parameter language mod-
els using model parallelism. arXiv preprint arXiv:1909.08053
(2019).

[15] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu
Ou, and Peng Jiang. 2019. BERT4Rec: Sequential recom-
mendation with bidirectional encoder representations from
transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–
1450.

[16] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023.
Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. Advances in
neural information processing systems 30 (2017).

[18] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona
Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt: Open
pre-trained transformer language models. arXiv preprint
arXiv:2205.01068 (2022).

42

https://arxiv.org/abs/2303.08774

	Abstract
	1 Introduction
	2 Background and Related Work
	3 CPU Offloading
	4 Evaluation
	5 Conclusion
	References

