
Dopia: Online Parallelism Management for Integrated
CPU/GPU Architectures

Younghyun Cho

University of California, Berkeley

younghyun@berkeley.edu

Jiyeon Park

Seoul National University

jiyeon@csap.snu.ac.kr

Florian Negele

ETH Zürich

negelef@openbrace.org

Changyeon Jo

Seoul National University

changyeon@csap.snu.ac.kr

Thomas R. Gross

ETH Zürich

trg@inf.ethz.ch

Bernhard Egger

Seoul National University

bernhard@csap.snu.ac.kr

Abstract
Recent desktop and mobile processors often integrate CPU

and GPU onto the same die. The limited memory bandwidth

of these integrated architectures can negatively affect the per-

formance of data-parallel workloads when all computational

resources are active. The combination of active CPU and

GPU cores achieving the maximum performance depends

on a workload’s characteristics, making manual tuning a

time-consuming task. Dopia is a fully automated framework

that improves the performance of data-parallel workloads

by adjusting the Degree Of Parallelism on Integrated Archi-
tectures. Dopia transparently analyzes and rewrites OpenCL

kernels before executing them with the number of CPU and

GPU cores expected to yield the best performance. Evaluated

on AMD and Intel integrated processors, Dopia achieves 84%

of the maximum performance attainable by an oracle.

CCS Concepts • Computer systems organization →
Parallel architectures; • Software and its engineering→
Source code generation; Runtime environments; Con-
currency control.

Keywords Parallelism management, integrated architec-

tures, code analysis, machine learning
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1 Introduction
Many recent desktop and mobile processors integrate CPU

and GPU cores onto a single die. Examples of such inte-

grated architectures are AMD’s accelerated processing units

(APU) [3] and Intel processors since Skylake [11]. This de-

sign presents an attractive alternative to dedicated GPUs

because of the lower cost and energy consumption [23, 25]

and because the shared off-chip memory supports simpler

parallel programming models that do not require explicit

data copying operations [14, 32].

However, achievingmaximal performance for data-parallel

workloads on integrated architectures is a surprisingly chal-

lenging problem. The characteristics of a parallel workload

influences its affinity: workloads with frequent control flow

changes and irregular memory accesses tend to achieve bet-

ter performance on the CPU, while kernels with few control

divergences and regular memory access patterns typically

achieve higher performance on the GPU [24, 36]. Orchestrat-

ing the co-execution of a workload on CPU and GPU cores

without a prior profile run is a non-trivial problem [6, 37]

since (1) the optimal static partitioning of the workload to the

CPU and the GPU is unknown, and (2) a dynamic partition-

ing scheme must implement a low-overhead global shared

queue to distribute the workload dynamically.

Existing techniques select the execution mode based on

the kernel’s affinity [10, 37, 38]. The state-of-the-art tech-

nique [37], e.g., executes a kernel exclusively on the CPU,

the GPU, or in parallel on all cores of the CPU and the GPU.

Contrary to intuition, however, engaging all available compu-

tational cores does not necessarily lead to maximum perfor-

mance due to the limited sharedmemory bandwidth. Figure 1

demonstrates this fact with a heatmap showing the through-

put of the Gesummv benchmark [15] for an input problem size

of 16,384 on AMD Kaveri [2]. Normalized to the best config-

uration that utilizes four CPU threads and 192 GPU threads,

the configurations CPU only (CPU: 4, GPU: 0 threads), GPU

only (CPU: 0, GPU: 512 threads), and CPU+GPU (CPU: 4,

GPU: 512 threads) only achieve 78, 13, and 61 percent of the

maximally attainable performance. Even though the Gesummv
kernel is CPU-affine, additional processing on the GPU may

lead to better performance, but only as long as the memory
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Figure 1. Normalized throughput of Gesummv [15] for vary-

ing workload partitionings on AMD Kaveri [2]. The X and Y

axes show the number of active CPU and GPU threads.

system is not overloaded. If too many GPU threads are active,

the outnumbered CPU cores experience a significant per-

formance degradation caused by congestion in the memory

system.

Predicting andmanaging thread-level parallelism and thread

placement on multi-core processors has long been an im-

portant research topic [5, 8, 12, 13, 29]. Existing techniques,

however, are not applicable to integrated architectures be-

cause of the integrated architectures’ heterogeneity and the

black-boxed GPU thread scheduler that does not allow for a

dynamic adjustment of the number of active threads.

Our goal is to execute data-parallel workloads at max-

imum performance on integrated architectures. Unlike in

HPC environments where manual software optimization

based on profiling data is standard, our method does not

require prior profile runs or manual intervention. To achieve

this goal, the following research and engineering problems

must be addressed: (1) model performance of data-parallel

kernels in dependence of the number of active CPU and

GPU cores on a given integrated architecture, (2) extract the

relevant characteristics from a kernel’s source code for the

performance model, (3) control the degree of parallelism on

the GPU with a pure software approach, and (4) manage a

kernel’s execution by dynamically distributing a workload

to CPU and GPU core resources.

To this end, we present Dopia, a fully automated, software-

only technique that automatically adjusts the Degree Of
Parallelism of data-parallel workloads on Integrated Archi-
tectures. Dopia is integrated into the OpenCL runtimes of

integrated architectures. A kernel is first submitted to the

OpenCL runtime for compilation. At that time, Dopia ex-

tracts the kernel’s performance-relevant features through

static code analysis and generates a CPU and a GPU version

that can dynamically adjust their degree of parallelism (DoP)

at runtime. When the kernel is launched, Dopia first invokes

the machine learning model to predict the number of CPU

and GPU cores expected to minimize the kernel’s runtime,

then executes the kernels on the CPU and the GPU with the

selected DoP. During execution of the workload, Dopia’s dy-

namic workload distribution technique dynamically assigns

work to CPU and GPU resources to achieve load-balancing.

Dopia is evaluated on an AMD Kaveri and an Intel Skylake

integrated architecture. We present a parameterizable syn-

thetic workload that is used to characterize the platforms and

generate the machine learning model. We analyze the per-

formance of the dynamic workload distribution and discuss

the choice and performance of the selected machine learning

technique. An evaluation with fourteen data-intensive real-

world OpenCL kernels from Polybench [15], sparse-matrix

vector multiplication (SpMV), and a PageRank algorithm

shows that Dopia achieves 84% of the maximum performance

attainable by an oracle that always predicts the best degree

of parallelism for any given kernel. This result includes all

runtime overhead incurred by evaluating the model and dy-

namic workload partitioning of Dopia.

The remainder of this paper is organized as follows. Sec-

tions 2 and 3 discuss related work and the background of this

work. Section 4 introduces the high-level design of Dopia.

Sections 5–7 cover the code analysis, the malleable kernel

generation, the machine learning (ML) model, and the work-

load distribution technique employed by Dopia. Sections 8

and 9 describe the experimental setup and discuss the results,

and Section 10 concludes this paper.

2 Related Work
Dopia combines several techniques from software-based

parallelism management for GPUs, performance prediction

based on machine learning, to dynamic workload partition-

ing on a heterogeneous architecture. While each topic has

been researched independently, to the best of our knowledge,

this is the first work to present an integrated and automatic

framework for integrated architectures. This section gives

an overview of related work.

2.1 Integrated Architectures
Partitioning a workload is key to leveraging different proces-

sors on heterogeneous systems. The problem of optimally

partitioning aworkload and reducing unnecessary data trans-

fers on disjoint memory systems has been investigated in

previous projects [22, 24, 31]. The global shared memory on

integrated architectures allows for a more efficient data par-

titioning since no costly data copy operations are required.

Kaleem et al. [18] dynamically partition a workload between

the CPU and the GPU to achieve load balancing while con-

sidering the heterogeneity of the different cores. Zhang et

al. [36] and Cho et al. [6] optimize irregular data-parallel

2



Dopia: Online Parallelism Management for Integrated CPU/GPU Architectures PPoPP ’22, April 2–6, 2022, Seoul, Republic of Korea

Integrated ArchitectureOpenCL Workload
Work-groups

Work-items

Shared memory

Processor
GPU device

CPU device

core
CU

PE PE

PE PE

CU

PE PE

PE PE

core

core core

Figure 2. Running OpenCL workloads on integrated archi-

tectures.

workloads on integrated CPU-GPU architectures by execut-

ing irregular computational work-chunks on the CPU.

However, several studies [37, 38] confirm that utilizing all

available CPU and GPU resources can lead to severe perfor-

mance degradation on integrated architectures due to the

shared memory’s limited bandwidth. Researchers have re-

cently focused on selecting the best execution mode between

CPU, GPU, and collaborative execution [10, 37]; however,

these approaches still leave room for improvement because

varying the number of CPU and GPU threads is not consid-

ered. The technique presented in this work considers the

memory bottleneck of integrated architectures and transpar-

ently adjusts the thread-level parallelism on CPU and GPU

to achieve maximal performance.

2.2 Parallelism Management
Managing the degree of parallelism has long been an impor-

tant optimization technique for multi-core processors [5, 9,

12, 29, 34]. Unlike CPU architectures, however, modern GPU

hardware architectures do not allow for a flexible adjust-

ment of the thread-level parallelism since the GPU threads

are managed directly by a GPU-internal scheduler. By de-

fault, GPU schedulers create as many threads as possible

to utilize all computational hardware resources of the GPU.

Various techniques optimize the thread-level parallelism on

GPUs by modifying the GPU scheduler [17, 19], but these

techniques require modifications to the hardware and are not

readily applicable to existing GPUs. In contrast to existing

work, we present a software-based solution to parallelism

management for GPU cores.

2.3 Performance Model
Analytical models of application performance as a function

of the number of active threads [7, 13, 16, 34, 35] commonly

require one or several profiling runs of the workload to ex-

tract the necessary performance features. Emani et al. [12]

determine the number of threads on multi-core processors

based on an ML model; however, the techniques do not con-

sider the degree of parallelism for GPUs or heterogeneous

architectures. Dopia does not rely on profile runs. Instead it

extracts performance-relevant features of an OpenCL kernel

at compile-time through static code analysis. At runtime,

Dopia employs a machine learning model to determine the

expected best degree of parallelism of CPU and GPU cores.
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Figure 3. Performance for varying GPU core utilizations and

four CPU threads. The number of active PEs across all CUs

on AMD Kaveri [2] is adjusted using the code transforma-

tion technique presented in Section 6. CPU/GPU workload

partitioning is performed by Dopia’s dynamic workload dis-

tribution algorithm (Section 7). The work-group size is 256.

3 Background and Motivation
3.1 Execution Model
Programming models such as OpenCL [20] or CUDA [26]

enable data-level parallel processing on the GPU. Figure 2 il-

lustrates the OpenCL abstraction of a workload and the map-

ping to an integrated architecture. The 𝑛-dimensional data-

parallel input is split intowork-items, the smallest atomic unit

of work. Work-items are grouped into work-groups that con-
stitute the minimal unit of assigned work. On the hardware

side, the CPU and the GPU represent independent compute
devices. A compute device comprises one or more compute
units (CUs). On the GPU, each CU contains a number of

processing elements (PEs), also called GPU cores in this paper.

On the CPU, CUs are a logical concept; typically, one core

represents one CU [33]. Thanks to the shared global off-chip

memory, work-groups can be assigned to either CPU or GPU

CUs without the need for data copies.

3.2 Degree of Parallelism and Performance
The execution time of data-intensive workloads on inte-

grated architectures varies significantly depending on the

number of active cores. Figure 3 plots the execution time and

the number of memory requests of the Gesummv and the

SpMV kernel for an increasing number of active GPU cores

on AMD Kaveri [2]. From Figure 3 (a), we observe that the

best configuration (37.5% GPU utilization for both Gesummv

and SpMV) achieves a significant speedup compared to us-

ing all 512 GPU cores. Figure 3 (b) reveals the reason for

the slowdown: the increasing number of active GPU cores

causes many more capacity misses in the GPU’s shared L2
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Figure 4. Overview of the Dopia approach.

cache [28], resulting in a significantly higher number of

DRAM accesses and congestion in the memory system.

3.3 Controlling the Degree of Parallelism
On the CPU, the number of active cores can easily be con-

trolled by a work-group scheduler that assigns work-groups

only to a limited number of threads. On the GPU, the sched-

uling algorithm is implemented directly on-chip and not

controllable from the outside. A global scheduler assigns

work-groups to CUs, and the CUs’ warp schedulers execute

the work-items on all PEs of a CU. Existing work has ad-

justed the thread-level parallelism on GPUs by modifying

the hardware GPU scheduler or not activating all CUs of the

GPU [17, 19]. Dopia presents a novel software-only approach

that executes a workload on all CUs of the GPU but throttles

the number of active PEs within a CU. The advantage of

Dopia’s technique is that it enables fine-grained control over

the GPU’s level of parallelism in software.

The main idea of Dopia’s thread-level parallelism manage-

ment on the GPU is to block the execution of work-items on

certain PEs inside a CU. OpenCL provides no means to iden-

tify the index of a PE a kernel is running on; however, a kernel

can query the index of a work-item within its work-group

using the get_local_id(0) function. Since work-items are

mapped linearly to the available PEs, and the number of PEs

in a CU is known, we can compute the index of a PE by the

index of its work-item. It is then possible to use control flow

divergence to prevent a PE from executing its assigned work-

item. Since the GPU scheduler assumes that all assigned

work-items are processed, the active PEs within a CU use a

CU-local variable to track the processed work-items and loop

until the entire work-group has been processed. The details

of our approach are discussed in more detail in Section 6.

4 Overview
Dopia is an additive runtime library running on top of a

fully-functional OpenCL runtime system. Through library

interpositioning, Dopia transparently intercepts OpenCLAPI

calls and analyzes and transforms OpenCL kernels into mal-

leable code. When executing a workload, Dopia predicts the

optimal level of parallelism and orchestrates the workload

distribution to the CPU and GPU cores. Figure 4 shows the

overall architecture and work-flow of Dopia.

When an OpenCL kernel is compiled, Dopia performs

static code analysis and transforms the kernel into mal-

leable code that allows runtime adjustments to its degree of

parallelism. The code feature analysis extracts information

about ALU andmemory operations (number, access patterns).

The code transformation rewrites the original OpenCL ker-

nel into a CPU version and a malleable GPU kernel. When

the kernel is launched via clEnqueueNDRangeKernel, Dopia
feeds the extracted code features into a performance model

to predict the optimal degree of parallelism of the kernel on

the given architecture. The kernel is then executed on the

selected number of CPU and GPU cores, and Dopia dynami-

cally distributes the workload to all active compute resources.

The following sections describe the individual components

of Dopia in more detail.

5 Feature Extraction and Performance
Modeling

This section describes Dopia’s internal code analysis tool

and the machine learning model (ML) used to predict the

optimal thread-level parallelism.

5.1 Static Code Analysis and Feature Extraction
Dopia’s code analysis tool is derived from the Eigen Compiler

Suite (ECS) [27]. ECS is a lightweight, fast, and self-contained

compiler development toolchain that allows us to implement

the features of interest with small effort. The compiler fron-

tend performs lexical, syntactic, and semantic analysis and

creates an abstract syntax tree (AST) of the kernel code. The

analysis backend traverses the AST and collects statistics

about each loop nest’s number and types of memory and

arithmetical operations. The aggregated values of all loop

nests constitute the input features for the ML model. The

compiler currently assumes OpenCL 1.2 but can be adapted

to current OpenCL versions.

As discussed in Section 3, the limited memory bandwidth

is the main cause of performance degradation on integrated

architectures. The memory bandwidth utilization is strongly

correlated with the memory access rate and the memory

access pattern [7, 34]. For GPUs, the type of memory ac-

cesses issued by neighboring PEs determines whether mem-

ory accesses can be coalesced, which significantly affects the

number of memory accesses issued by the GPU [1].

4
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Table 1. Model features.

Source Type Feature

code mem op

#mem_constant: number of memory oper-

ations to a constant address.

code mem op

#mem_continuous: number of memory

operations to a continuous address.

code mem op

#mem_stride: number of memory opera-

tions with a constant stride.

code mem op

#mem_random: number of memory oper-

ations with a random offset.

code arith op

#arith_int: number of arithmetic

add/mul/div operations on integer data.

code arith op

#arith_float: number of arithmetic add/

mul/div/special operations with floating-

point data.

input program work_dim: workload dimension.

input data global_size: total number of work-items.

input data

local_size: number of work-items per work-

group.

param config

CPU_util: normalized number of active

CPU cores.

param config

GPU_util: normalized number of active

GPU cores.

Dopia’s code analyzer collects statistics about the follow-

ing types of operations (Table 1).

Memory operations. All operations accessing memory are

counted. Memory operations inside loops are classified into

constant, continuous, stride, and random based on their mem-

ory address pattern. As an example, consider the following

kernel with a nested loop:

1: for (int i = 0; i < N; i ++)
2: for (int j = 0; j < M; j ++)
3: D[i][j] = A[i][j] + B[j][i] +
4: C[c1] + C[B[[j][i]]];

Assuming a row-major data layout, the load A[i][j] is clas-

sified asmem_continuous because the accessed memory loca-

tions are continuous within the loop. The access to B[j][i]
on line 3, on the other hand, represents an access with a

constant stride and is classified as a mem_stride. The access
C[c1] repeatedly accesses the same memory location and is

categorized as mem_constant. The indirect access to array C,
C[B[j][i]], is classified asmem_random, while B[j][i] on
line 4 is an access with a constant stride (mem_stride). The
write operation to D[i][j] constitutes a continuous mem-

ory operation, leading to the following extracted memory-

related features: #mem_constant = 1, #mem_continuous = 2,
#mem_stride = 2, and #mem_random = 1.

Arithmetic operations. The ratio between the number of

memory and arithmetic operations affects the memory ac-

cess rate, hence, all arithmetic operations in a kernel are

Table 2. Parameters of the synthetic workload

𝛼mat𝛽d 𝛾c 𝛿T 𝜖R 𝜃C dim dtype

Param Description

𝛼
Number of matrices to add. “3mat” computes:

∀𝑖 C[i] = A[i] + B[i] + C[i]

𝛽
Dimension of the matrices. “3mat2d” computes:

∀𝑖, 𝑗 C[i][j] = A[i][j] + B[i][j]+ C[i][j]

𝛾

Number of computational operations. For example,

“2mat2d2c” yields:
C[i][j] = c1*c2*A[i][j] + c1*c2*B[i][j];

𝛿

Number of matrices with transposed memory ac-

cesses. “2mat2d2c1T” computes:

C[i][j] = c1*c2*A[i][j] + c1*c2*B[j][i];

𝜖

Number of matrices with randomized memory ac-

cesses. “2mat2d2c1R” computes:

C[i][j] = c1*c2*A[i][j] + c1*c2*B[D[j]];

𝜃

Number of matrices for which memory accesses are

constant. “2mat2d2c1C” computes:

C[i][j] = c1*c2*A[i][j] + c1*c2*B[c3];

dim Work-item dimension of the kernel.

dtype Data type of matrices and operations.

considered as well. Similar to the accessed address pattern

of memory operations, the type of an arithmetic operation is

an important feature to predict performance. This is, e.g., be-

cause GPUs can process floating-point data more efficiently

than CPUs. Dopia’s code analyzer distinguishes between

integer and floating-point arithmetic operations.

Input data. The input data’s dimensionality and the number

and composition of the work-groups constitute other impor-

tant features for performance estimation. These features are

not available at compile-time but only when the kernel is sub-

mitted for execution using the clEnqueueNDRangeKernel
API. Dopia extracts the features work_dim, determining the

number of dimensions of the kernel, and global/local_size
that represent the size of the workload (the total number of

work-items) and the granularity of a work unit (the number

of work-items in a work-group).

5.2 Performance Modeling
Dopia relies on an offline pre-trained ML model to predict

the best thread-level parallelism for the CPU and GPU. The

model takes as its input a feature vector comprising the

eleven features listed in Table 1 and outputs the expected

normalized performance of the configuration. The advantage

of an ML-based approach is its ability to detect the often

inconspicuous correlations between the input features and

the runtime of a kernel. In addition, performance models

for different architectures can be generated automatically

for different architectures. Compared to other optimization

approaches such as binary search or gradient descent, an ML-

based approach is more computationally efficient because it

does not require any profiling runs at runtime.

5
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__kernel void 2mat3d(__global float* A,
                     __global float* B,
                     __global float* C,
                     int NZ, int NY, int NX)
{
 1: int z = get_global_id(0);
 2: if (z < NZ) {
 3:   for (int y = 0; y < NY; y++) {
 4:     for (int x = 0; x < NX; x++) {
 5:       int idx = z*(NY*NX) + y*NX + x;
 6:       C[idx] = A[idx] + B[idx];
 7: } } }
}

__kernel void 2mat3d(__global float* A,
                     __global float* B,
                     __global float* C,
                     int NZ, int NY, in NX,
                     int dop_gpu_mod, int dop_gpu_alloc)
{
10: __local int local_worklist[1];
11: if (get_local_id(0) == 0) local_worklist[0] = 0;
12: barrier(CLK_LOCAL_MEM_FENCE);

13: if (get_local_id(0) % dop_gpu_mod < dop_gpu_alloc)) {
14:   for (int dynamic_work = atomic_inc(local_worklist);
           dynamic_work < get_local_size(0);
           dynamic_work = atomic_int(local_worklist))
15:   {
 1:     int z = get_global_id(0);
16:     int z = get_group_id(0)*get_local_size(0) +
                     get_global_offset(0) + dynamic_work;
17:     if (z < NZ) {
18:       for (int y = 0; y < NY; y++) {
19:         for (int x = 0; x < NX; x++) {
20:           int idx = z*(NY*NX) + y*NX + x;
21:           C[idx] = A[idx] + B[idx];
22:     } } }
23:   }
24: }
}

Figure 5. Code transformation of a 1-dimensional kernel for

malleable execution on a GPU.
1

To obtain sufficient training data for the ML model, we

execute a parameterizable synthetic workload with a total

of eight parameters. The basic operation of the workload

is an addition of 𝛼 matrices with a dimension of 𝛽 . The 𝛾

parameter allows control over the computational intensity

of the kernel. Parameters 𝛿 , 𝜖 , and 𝜃 control the generated

memory access patterns by specifying the number of ma-

trices that are accessed with stride, indirect, and constant

accesses, respectively. The seventh parameter 𝑑𝑖𝑚 defines

the dimension of the input data, and the eighth parameter

𝑑𝑡𝑦𝑝𝑒 determines the data type of the matrices and thus

the arithmetic operations. Table 2 lists the parameters and

describes their effect in more detail.

By varying the code and input parameters, we generate a

total of 1,224 synthetic workloads (Table 4). Each workload is

executed with all possible combinations of thread counts on

the CPU and the GPU, and its performance is recorded. Gath-

ering this training data for a specific integrated architecture

takes a few hours. For the prediction, any suitable machine

learning model can be used. Dopia employs a DecisionTree

model because it offers good prediction accuracy at a low

inference overhead. Model training is performed with the

scikit-learn [30] library. The generated decision tree is

converted to C code and invoked by Dopia for at-runtime

model inference. A detailed analysis of different machine

learning techniques is given in Section 9.2.

__kernel void 2mat3d(__global float* A,
                     __global float* B,
                     __global float* C,
                     int NZ, int NY, int NX)
{
 1: int z = get_global_id(0);
 2: int y = get_global_id(1);
 3: if ((z < NZ) && (y < NY)) {
 4:   for (int x = 0; x < NX; x++) {
 5:     int idx = z*(NY*NX) + y*NX + x;
 6:     C[idx] = A[idx] + B[idx];
 7: } }
}

__kernel void 2mat3d(__global float* A,
                     __global float* B,
                     __global float* C,
                     int NZ, int NY, in NX,
                     int dop_gpu_mod, int dop_gpu_alloc)
{
10: __local int local_worklist[1];
11: if (get_local_id(0) == 0) local_worklist[0] = 0;
12: barrier(CLK_LOCAL_MEM_FENCE);

13: if (get_local_id(0) % dop_gpu_mod < dop_gpu_alloc)) {
14:   for (int dynamic_work = atomic_inc(local_worklist);
           dynamic_work < get_local_size(0)*get_local_size(1);
           dynamic_work = atomic_int(local_worklist))
15:   {
 1:     int z = get_global_id(0);
 2:     int y = get_global_id(1);
16:     int z = get_group_id(0)*get_local_size(0) +
                    get_global_offset(0) + 
                    dynamic_work / get_local_size(1);
17:     int y = get_group_id(1)*get_local_size(1) +
                    get_global_offset(1) + 
                    dynamic_work % get_local_size(1);
18:     if ((z < NZ) && (y < NY)) {
19:       for (int x = 0; x < NX; x++) {
20:         int idx = z*(NY*NX) + y*NX + x;
21:         C[idx] = A[idx] + B[idx];
22:     } }
23:   }
24: }
}

Figure 6. Code transformation of a 2-dimensional kernel for

malleable execution on a GPU.
1

6 Malleable Code Generation
Dopia automatically generates CPU code and a malleable

GPU version of the original OpenCL kernel. The process is

illustrated with the 2mat3d kernel that computes the sum

of two three-dimensional matrices. Figures 5 and 6 show

the original kernel in a 1/2-dimensional workspace and the

transformed malleable GPU kernels. Figure 7 shows the gen-

erated CPU code for the 1-dimensional workspace. In the

1-dimensional workspace, one work-item computes a given

𝑧 plane (Figure 5, line 1) by iterating through the 𝑦 and 𝑥

dimensions (lines 3–7). The 𝑧 index is set to the work-item’s

index in the global work-item space. In the 2-dimensional

workspace, 𝑧 and 𝑦 are given by the position of the work-

item in the global work-item space (Figure 6, lines 1–2), and

the kernel only loops over 𝑥 (lines 4–6).

The lower parts of Figures 5 and 6 show the code after

the automatic code transformation that renders the ker-

nels malleable. Code changes are marked with bold and

strikethrough text. The basic idea is to throttle parallelism by

disabling specific cores from processing work-items. Within

a work-group, work-items are allocated linearly to the PEs of

1
The functions get_local_id(), get_local_size(), get_group_id(),
and get_global_offset() are OpenCLAPI functions [21] used to compute

a work-item’s index.
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void 2mat3d_CPU(float* A, float* B, float* C,
                int NZ, int NY, int NX,
                size_t* global_size, size_t* local_size,
                std::atomic_int worklist, size_t num_wgs)
{
10:  for (size_t wg_id = worklist->fetch_add(1);
          wg_id < num_wgs;
          wg_id = worklist->fetch_add(1))
11:  {
12:    for (size_t global_id = wg_id * local_size[0];
            global_id < wg_id * local_size[0]+local_size[0];
            global_id++)
13:    {
14:      int z = (int)global_id;
 1:      int z = get_global_id(0);
15:      if (z < NZ) {
16:        for (int y = 0; y < NY; y++) {
17:          for (int x = 0; x < NX; x++) {
18:           int idx = z*(NY*NX) + y*NX + x;
19:           C[idx] = A[idx] + B[idx];
20:      } } }
21:    }
22:  }
}

Figure 7. Generated CPU code for the original OpenCL

kernel in Figure 5.

a CU (Figure 2). The malleable GPU kernels retrieve a work-

item’s local index relative to its work-groupwith get_local_id().
The two parameters dop_gpu_mod and dop_gpu_alloc con-

trol the degree of parallelism: only PEs whose initially as-

signedwork-item local indexmodulo dop_gpu_mod is smaller

than dop_gpu_alloc are allowed to process work. Since not
all PEs compute their assigned work-items, Dopia employs

an atomic CU-local worklist to process all work-items of a

work-group in a loop.

The throttling code is implemented in line 13 of the modi-

fied kernels (Figures 5 and 6). With a work-group size = 16,

𝑑𝑜𝑝_𝑔𝑝𝑢_𝑚𝑜𝑑 = 3, and 𝑑𝑜𝑝_𝑔𝑝𝑢_𝑎𝑙𝑙𝑜𝑐 = 1, e.g., the GPU

scheduler launches 16 threads per CU, however, only the

threads assigned work-items 0, 3, 6, 9, 12, and 15 are allowed

to proceed; all other threads exit immediately.

The work-item distribution is coordinated with a CU-local

local_worklist initialized by thread (PE) 0 (lines 10–12 in

the modified kernels). All active threads atomically obtain

the next work-item id from the worklist (lines 13–14) until

all work-items of the work-group have been processed. The

indices 𝑧 and 𝑦 (in the 2-dimensional workspace) identifying

the work-item are computed explicitly using OpenCL API

calls (lines 16 and 16–17 for the one- and two-dimensional

workspace, respectively).

Figure 7 shows code generated for the CPU and the 1-

dimensional workspace. The function 2mat3d_CPU executes

one work-group on one core. The work-items of the work-

group are processed in sequence. Dopia’s runtime (Section 7)

maintains a (CPU-side) atomic worklist that is accessed by

all active CPU cores to fetch their next work-group (line 10).

The global ID of the work-item (the 𝑧 plane) is computed

from the dimensions of the OpenCL workload (line 12).

The presented software-based technique is applicable to

general OpenCL data-parallel applications and integrated

CPU-GPU architectures that only support locally shared

atomic operations (available in OpenCL 1.2) since it does not

rely on CPU-GPU (global) atomic support.

CPU

core

1. request 
work

2. acquire work core

Work-groups

GPU

CU
PE PE

PE PE

CU
PE PE

PE PE

Scheduler
Queue

1. check availability

2. enqueue work

Figure 8. Workload distribution scheme in Dopia.

Algorithm 1 Runtime dynamic workload management

1: function ExecuteKernel(𝑡𝑎𝑟𝑔𝑒𝑡_𝑘𝑒𝑟𝑛𝑒𝑙, 𝑛𝑢𝑚_𝑤𝑔𝑠, ...)

2: # evaluate ML model

3: 𝑑𝑜𝑝_𝑐𝑝𝑢, 𝑑𝑜𝑝_𝑔𝑝𝑢_𝑚𝑜𝑑 , 𝑑𝑜𝑝_𝑔𝑝𝑢_𝑎𝑙𝑙𝑜𝑐 =

4: 𝑒𝑣𝑎𝑙_𝑚𝑜𝑑𝑒𝑙 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑘𝑒𝑟𝑛𝑒𝑙, 𝑛𝑢𝑚_𝑤𝑔𝑠, ...))
5: # prepare worklist and start CPU threads

6: 𝑎𝑡𝑜𝑚𝑖𝑐 𝑤𝑔𝑙𝑖𝑠𝑡 = 0

7: for each 𝑐𝑝𝑢𝑐𝑜𝑟𝑒 ∈ 𝑑𝑜𝑝_𝑐𝑝𝑢 do
8: 𝑐𝑝𝑢𝑐𝑜𝑟𝑒.𝐿𝑎𝑢𝑛𝑐ℎ𝑇ℎ𝑟𝑒𝑎𝑑 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑘𝑒𝑟𝑛𝑒𝑙_𝐶𝑃𝑈 , ..., 𝑤𝑔𝑙𝑖𝑠𝑡 )
9: # push chunks of work to the GPU

10: 𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒 = (𝑛𝑢𝑚_𝑤𝑔𝑠/10)
11: repeat
12: 𝑠𝑡𝑎𝑟𝑡 = 𝑎𝑡𝑜𝑚𝑖𝑐_𝑓 𝑒𝑡𝑐ℎ_𝑎𝑑𝑑 (𝑤𝑔𝑙𝑖𝑠𝑡, 𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒)
13: 𝑔𝑝𝑢.𝐸𝑛𝑞𝑢𝑒𝑢𝑒𝐾𝑒𝑟𝑛𝑒𝑙 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑘𝑒𝑟𝑛𝑒𝑙_𝐺𝑃𝑈 , ...,
14: 𝑠𝑡𝑎𝑟𝑡, 𝑚𝑖𝑛 (𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒, 𝑛𝑢𝑚_𝑤𝑔𝑠 − 𝑠𝑡𝑎𝑟𝑡 ),
15: 𝑑𝑜𝑝_𝑔𝑝𝑢_𝑚𝑜𝑑,𝑑𝑜𝑝_𝑔𝑝𝑢_𝑎𝑙𝑙𝑜𝑐)
16: 𝑔𝑝𝑢.𝑊𝑎𝑖𝑡𝐹𝑜𝑟𝐹𝑖𝑛𝑖𝑠ℎ ()
17: until 𝑤𝑔𝑙𝑖𝑠𝑡 ≥ 𝑛𝑢𝑚_𝑤𝑔𝑠

7 Runtime Management
When a kernel is submitted for execution, Dopia combines

the features obtained from static code analysis with the fea-

tures only available at runtime: the dimension of the work-

load, the total number of work-items, and the number of

work-items per work-group (refer to Table 1 for details).

Although different techniques are possible, the static fea-

tures are passed to the runtime via global constants in the

generated CPU kernel code in the current implementation.

Dopia’s ML model is evaluated for different CPU and GPU

core allocations to find the best thread-level parallelism for

the given kernel. The core configuration of the predicted

minimal kernel runtime determines the CPU and GPU core

configuration with which the kernel is executed.

Since the GPU and the CPU constitute two independent

OpenCL devices, the OpenCL runtime does not provide

workload distribution out-of-the-box. A workload can be dis-

tributed statically or dynamically. Predicting a static work-

load distribution that is well-balanced for an a priori un-

known kernel is a complex problem [6, 24] and outside the

scope of this paper. Dopia employs a dynamic approach that

assigns the workload to the two compute devices on demand.

Figure 8 illustrates Dopia’s dynamic workload distribution

technique. Since Intel integrated architectures do not support

7
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CPU-GPU global atomic operations, Dopia employs a pull-

based approach for CPU threads and a push-based scheme

for the GPU. Algorithm 1 shows the pseudo-code of Dopia’s

runtimemanager. It first determines the expected best degree

of parallelism for the CPU and GPU by evaluating the ML

model for the given parameters (lines 2–4). The runtime

manager then creates an atomic worklist to keep track of the

next yet unprocessed work-group’s index (0 ≤ 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 <

𝑛𝑢𝑚_𝑤𝑔) (line 6). Then, dop_cpu CPU threads are created

to execute the generated CPU kernel code as illustrated by

Figure 7 (lines 7–9). All threads have access to the atomic

worklist and fetch one work-group at a time for processing

until all work-groups have been processed. The runtime

manager then starts pushing chunks of work to the GPU for

processing. It repeatedly extracts a range of work-groups

from the worklist (line 13) and assigns them to the GPU

for processing (lines 14–16) using the generated malleable

GPU kernel and the predicted best degree of parallelism on

the GPU. After the GPU has finished processing the kernel

with the assigned work-groups, the process repeats until all

work-groups have been processed (lines 17–18).

In the current implementation of Dopia, the GPU’s share

of allocated work-groups is set to 1/10𝑡ℎ of all work-groups
(line 11). This value was empirically found to minimize load

imbalance and dispatch overhead. More elaborate work-

group assignments such dynamic or application-specific

work chunks or optimizations for systems that support global

atomic operations (and can thus use a pull-based approach

on the GPU) are left for future work.

It is also worth noticing that an ML model could be used

to predict the static partitioning without relying on dynamic

workload distribution. However, increasing the prediction

domain would require more training data and increase the

modeling overhead.

8 Experimental Setup
8.1 Environment
We have implemented Dopia for the AMD and Intel OpenCL

runtime and evaluated it on anAMDA10-7850KAPU (Kaveri)

system [2] and an Intel Skylake i7-6700 processor system [11].

The AMD system combines a Streamroller-based quad-core

CPU running at 3.7/4.0GHz (base/turbo) and a Graphics Core

Next (GCN)-based GPU comprising eight CUs clocked at

720MHz with 64 PEs each (512 PEs in total). The quad-core

Intel system (eight threads; 3.4/4.0GHz) integrates an Intel

Gen9 HD Graphics NEO GPU clocked at 350/1150Mhz with

24 CU containing 32 PEs each (768 PEs in total).

8.2 Benchmark Scenario
Managing the degree of parallelism. Dopia considers five
different levels of CPU parallelism and nine levels on the

GPU. On the CPU, 0, 25, 50, 75, or 100% of all CPU resources

can be activated, whereas the step size on the GPU is 1/8𝑡ℎ ,

Table 3. DoP configurations on the evaluated systems.

System CPU configuration GPU configuration

AMD Kaveri 0, 1, 2, 3, 4 cores 0, 64, 128, . . . , 512 PEs

Intel Skylake 0, 2, 4, 6, 8 cores 0, 96, 192, . . . , 768 PEs

i.e., 0, 12.5, 25, . . . , 87.5, or 100% of all GPU resources are

activated. This allows Dopia to select one of 44 possible

configurations (5 × 9 − 1 = 44; the configuration CPU 0,

GPU 0 is excluded for obvious reasons). Table 3 lists the

concrete values for the evaluated systems.

Model training data set. The performance model of Dopia

is trained with a data set composed of data obtained from the

parameterizable synthetic workload and fourteen real-world

OpenCL kernels. The parameterizable synthetic workload

(Section 5) is evaluated for 17 distinct memory access pat-

terns in 72 configurations by varying the data type, workload

dimension, the number of computational operations, the size

of the matrices, and the size of a work-group, yielding a

total of 17 × 72 = 1, 224 data points. The real-world OpenCL

kernels include twelve data-intensive OpenCL kernels from

Polybench [15], 2DCONV, ATAX, BICG, FDTD, GEMM, GESUMMV,
MVT and SYR2K, plus a sparse-matrix and vector multiplica-

tion (SpMV) kernel using the compressed sparse row (CSR)

format and the iterative PageRank kernel (PageRank) [4].
The real-world workloads are run with two different work-

group organizations. Table 4 lists the evaluated configura-

tions. The data set is generated by executing all workloads

for all 44 core allocations, yielding 54,472 data points.

8.3 Comparisons
Dopia’s dynamic workload distribution technique is used to

compare the following resource allocation configurations:

• CPU processes a workload on all CPU cores. Work-

items are equally divided and statically assigned.

• GPU processes a workload only on the GPU. using all

PEs to run the kernel.

• ALL employs all CPU and GPU resources for collabo-

rative execution.

• Exhaustive represents the DoP configuration that

yields the minimal runtime from all possible 44 al-

locations. We employ an (unrealistic) perfect oracle

that is able select this configuration without any over-

head. In reality, the configuration is found through an

exhaustive search over the entire parameter space.

• Dopia as described in this paper with automatic DoP

selection based on an ML model and dynamic collabo-

rative execution on CPU and GPU.

The different configurations are evaluated by the execu-

tion time of the kernel. This means, in particular, that all

runtime overhead of Dopia (evaluation of the ML model and

workload distribution) is included in the results.

8
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Table 4. Model training data set.

1,224 parameterizable workloads (see Table 2 for no-
tation).

17 memory access patterns (1mat3d, 1mat3d1R, 1mat3d1T,
1mat3d1C, 1mat3d1C1R, 1mat3d1C1T, 2mat3d, 2mat3d1R,
2mat3d1T, 2mat3d1R1T, 2mat3d1C, 2mat3d1C1R,
2mat3d1C1T, 2mat3d1C1R1T, 1mat4d, 1mat4d1R,
1mat4d1T) × 2 data types (float, integer) × 2 dimen-

sions (1, 2) × 3 computational intensities (𝛾 = 0, 2, 4) × 3

matrix sizes (16384,32768,65536) × 2 work-group sizes (64,

256 work-items per work-group)

14 real-world OpenCL kernels.
Input

Benchmark Problem

size

Work-

group size

Description

2DCONV 8,192 8x8, 16x16 2D Convolution

ATAX1–2 16,384 64, 256

Matrix transpose and vector

multiply kernels 1–2

BICG1–2 16,384 64, 256 BiCG sub kernels 1–2

FDTD1–3 16,384 8x8, 16x16

2-D finite different time domain

kernels 1–3

GESUMMV 16,384 64, 256 Scalar, vector, matrix multiply

MVT1–2 16,384 64, 256

Matrix vector product and

transpose kernels 1–2

SYR2K 1,024 8x8, 16x16 Symmetric rant-2k operations

PageRank 16,384 64, 256 PageRank algorithm [4]

SpMV 16,384 64, 256 SpMV with the CSR format

9 Evaluation
In this section, we first assess the performance of Dopia’s

dynamicworkload distribution and discuss differentMLmod-

eling approaches in terms of accuracy and overhead. The

section concludes with an evaluation of the Dopia’s perfor-

mance for the parameterizable workloads and the real-world

OpenCL workloads.

9.1 Workload Distribution
Prior to evaluating the benefits of Dopia by selecting the

proper degree of parallelism, we investigate whether the

runtime overhead of the dynamic approach is acceptable

compared to static workload distribution. Figure 9 plots the

normalized execution time of CPU-only and GPU-only exe-

cution, best static (no dynamic dispatch overhead), and

Dopia’s dynamic workload distribution technique evaluated

with the real-world OpenCL kernels and varying input data

sizes with 50 different workloads. Static and dynamic use
all available compute resources. The best static configu-

ration is found by evaluating 19 different static workload

partitionings that assign from 5:95, 10:90, ..., 90:10, to 95:5

percent of the workload to the CPU and GPU, respectively.

We expect the runtime overhead of dynamic workload

distribution to slow down execution; however, the results
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Figure 9. Normalized execution time of dynamic workload

distribution compared to CPU, GPU, and static workload

distribution. The black and red lines indicate the mean and

median values, respectively. The boxes represent the 25th

and 75th percentile (lower/upper end), and the bottom/top

whiskers show the 5th and 95th percentile of the distribution.

in Figure 9 show that the dynamic workload distribution

technique achieves similar or even better performance than

static. The reason for this somewhat counter-intuitive re-

sult is that the dynamic approach manages the workload

distribution at a finer-grained level than the static approach

with its 5% step size. In other words, the runtime overhead

of dynamic workload distribution is small enough to outper-

form a coarser-grained static approach. Compared to CPU

or GPU only execution, Figure 9 reveals that exclusive use

of only one type of cores results in a significantly higher

average execution time and that co-execution is required to

achieve maximum performance.

9.2 ML Model Accuracy and Overhead
Different ML techniques can be used to build an ML perfor-

mance model for Dopia. To choose a technique, we use the

profiling data of parameterizable workloads and compare

the accuracy and overhead of different ML techniques. Fig-

ure 10 plots model accuracy and model inference overhead of

four different modeling techniques: Lin (Linear Regression),

SVR (Support Vector Regression), DT (Decision Tree), and RF
(Random Forest). The models are trained using all 44 core

configurations of the 1,224 parameterizable workloads and

evaluated with 64-fold cross-validation. Cross-validation is

a commonly used approach to validate the modeling accu-

racy for a dataset with a limited number of data points. The

dataset is randomly shuffled and divided into 64 equal-sized

groups. Each group represents the test set once, while the

remaining 63 are used to train the model. The reported re-

sults represent the average accuracy of all 64 models. We

observe that tree-based approaches such as DT and RF out-
perform regression approaches such as Lin and SVR for the

parameterizable workloads. Figure 10 (b) reveals that Lin
and DT have a several orders of magnitude lower inference

9
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(b) Inference overhead evaluating all 44 configurations.

Figure 10. Comparing prediction accuracy and inference

overheads between different ML modeling approaches.

Table 5. Correct number of classifications of Dopia and the

three static configurations for 1,224 workloads.

CPU GPU ALL Dopia

Kaveri 253 15 7 611

Skylake 27 57 19 334

overhead than SVR and RF that use complex modeling tech-

niques. Since the kernels and input data sizes used in this

work have relatively short execution times in the order of 1-2

seconds, overhead is a significant concern. Based on the high

accuracy and low overhead, in this work, Dopia employs

a DT-based model. We note that the modeling technique

can be tuned depending on the workload types and problem

sizes. In particular, if the kernel runtimes are in the order of

10 seconds or higher, more accurate models such as RF and
SVR can be considered.

9.3 Parameterizable Workloads
In this section, we evaluate the performance of Dopia’s ML

model by counting the number of correct predictions of the

model compared to the number of times the three static

approaches CPU, GPU, and ALL represent the best execution
mode for the parameterizable workloads. The results in Ta-

ble 5 show that Dopia’s model-guided approach outperforms

the static approaches by a wide margin.

While the model’s accuracy is not exceptionally high with

611/1224 = 50% for Kaveri and 334/1224 = 27% on Intel, we
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Figure 11. 64-fold cross validation on 1,224 parameterizable

workloads.

observe that minor prediction errors still lead to close-to-

optimal performance, as is evident from the performance

heat maps in Figure 1 and 12. For example, consider the

case where the best configuration for a workload is 1 CPU

thread and 512 GPU threads. Even if the model fails to predict

this configuration and selects a configuration with 2 CPU

threads and 512 GPU threads, this setup is still likely to

achieve close-to-optimal performance. To analyze how close

the predictions are to the best configurations in this two-

dimensional parameter space, Figure 11 (a) plots the error

using the Euclidean distance metric from the selected to

the best configuration. The metric is obtained by measuring

the Euclidean distance of each predicted configuration to

the optimal configuration. This value is then normalized

by dividing it by the longest distance in our problem space,

𝑠𝑞𝑟𝑡 (1.02 + 1.02). In comparison to the absolute prediction

accuracy in Table 5, Figure 11 (a) demonstrates that the mean

Euclidean distance error of Dopia is significantly lower, with

15% on the Kaveri system and 22% on the Skylake system.

Looking at tail performance, Dopia experiences an error of

about 20–30% for the 75th percentile, outperforming the

other configurations by a large margin.

To verify that Dopia achieves good overall performance,

we compare the normalized performance of the predicted

best configuration against the best-known one (Exhaustive).
Figure 11 shows the relative normalized performance of the

1,224 workloads for Dopia and the three fixed partitioning ap-

proaches. Similar to the analysis of the Euclidean error, Dopia

achieves 94% (Kaveri) and 92% (Skylake) of performance on

10
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Table 6. Normalized performance of the static partitionings

CPU, GPU, ALL and the best overall configuration from Fig-

ure 12 compared to Exhaustive.

Configuration Degree of parallelism Kaveri Skylake

CPU CPU 1.0, GPU 0 70.7% 60.7%

GPU CPU 0, GPU 1.0 18.6% 39.5%

ALL CPU 1.0, GPU 1.0 62.3% 69.6%

Best const.alloc. CPU 1.0, GPU 0.125 82.5% 81.6%

Dopia Driven by ML model 94.1% 92.2%

average compared to Exhaustive. A notable observation

is that conventional co-execution using all available CPU

and GPU resources performs significantly better on Intel.

The reason is that the Intel i7-6700 processor provides more

memory bandwidth and contains a shared last-level cache.

Overall, Dopia significantly outperforms the CPU, GPU, and
ALL configurations regardless of the hardware platform.

Table 6 and Figure 12 demonstrate the necessity of an au-

tomatic approach to parallelism management on integrated

architectures. The heat map in Figure 12 shows the averaged

normalized performance of all 1,224 parameterizable work-

loads for different CPU and GPU thread allocations on the

AMD and the Intel system. For each kernel, the values of the

cells in Figure 12 are computed by dividing the execution

time of the corresponding cell’s configuration by the shortest

execution time. The heat map shows the average cell value

over all kernels. Table 6 shows the normalized performance

of the three fixed resource allocations CPU, GPU, and ALL
plus the best constant configuration overall Best constant
allocation. We observe that Dopia significantly improves

the performance of all simple constant configurations.

9.4 Real-world workloads
This section evaluates the performance of Dopia and the

other co-running approaches compared to the best obtain-

able performance by a perfect oracle. For the evaluation

of the 14 OpenCL real-world kernels as listed in Table 4,

we use the parameterizable workloads and the real-world

applications for training; however, the kernel under evalu-

ation is excluded from the training dataset. Except for the

two-dimensional kernels 2DCONV, FDTD, and SYR2K, all other
kernels operate on one-dimensional input data. 2DCONV uses

a work-group size of 8x8, while all other kernels use a work-

group size of 256. The input graph for PageRank and SpMV
has 16,384 rows, and the number of elements per row in CSR

format is also 16,384.

Figure 13 plots the performance of CPU, GPU, ALL, and
Dopia for the 14 evaluated OpenCL workloads. While Dopia
uses the DT ML modeling technique, we also provide de-

tails about the LIN, SVR, and RF modeling techniques. On

average, Dopia (DT) achieves 84% of the normalized best
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Figure 12. Normalized performance for different constant

CPU-GPU thread configurations.

(oracle) performance on both systems, including all runtime

overhead. With SVR, the most accurate model, and disre-

garding the model inference overhead, Dopia would achieve

88% of the normalized best performance on both systems;

however, this is not a realistic scenario. The relatively large

model inference overhead of SVR compared to the real-world

kernels’ total execution time decreases the overall benefit

of SVR-based runs to 64% and 70% on Kaveri and Skylake,

respectively. This observation, however, suggests that for

larger kernels, Dopia can make use of more sophisticated

modeling techniques to obtain better performance.

Comparing the performance of the parameterizable work-

loads (Figure 11) to the real-world kernels, we observe that

the overall performance trend is similar. With the real-world

kernels, the second-best configuration ALL achieves an aver-

age performance of 76% on Kaveri and 75% on the Skylake

system, demonstrating that selecting the proper thread-level

parallelism is necessary to obtain the full processing power

of integrated processors. We observe that CPU outperforms

GPU for the parameterizable workloads, while for real-world

kernels, GPU outperforms CPU. This is because the parame-

terizable workloads are designed to evaluate memory access

pressure, and such workloads tend to be CPU-friendlier. On

the other hand, real-world applications contain several GPU-

friendly applications such as 2DCONV, FDTD1-3, and MVT2.
Overall, the results demonstrate that Dopia provides con-

sistently good performance for workloads with different per-

formance characteristics. Looking at individual workloads,

in most cases, Dopia outperforms the other three config-

urations or achieves similar performance, suggesting that

adjusting the number of CPU and GPU threads can improve

co-running performance over the state-of-the-art resource

allocation approaches [37] that select the best configuration

from CPU, GPU, and ALL configurations.

As an exception to the rule, we observe that Dopia fails to

select a good configuration for MVT2. This is especially true

on the Skylake system where the performance of Dopia is be-

low 40% of the maximal performance. Our analysis revealed
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Figure 13. Performance of Dopia for 14 real-world kernels and different ML modeling techniques. The overhead bar shows

the performance drop incurred by model inference.

two reasons for this result. First, the static code analysis

extracts an identical feature vector despite different perfor-

mance behavior for MVT2 and ATAX2, suggesting room for

improvement in the static code analysis and feature selec-

tion process. The other reason is that MVT2 performs only a

number of simple transpose operations on a data buffer, and

the GPU can execute these operations efficiently without

collaborative execution on the CPU. While the performance

of most benchmarks is relatively insensitive to minor mispre-

dictions, this is not true for MVT2 where the small mispredic-

tion of Dopia’s ML model causes a significant performance

drop. This can be alleviated by more training data from GPU-

friendly kernels such that the ML model can make better

predictions overall.

10 Conclusion
Dopia provides an automatic and fully software-based ap-

proach for workload partitioning on integrated CPU-GPU ar-

chitectures. Dopia dynamically analyzes andmodifies OpenCL

kernels as they are enqueued by an application for execution.

An integrated code analyzer extracts performance-relevant

features that are fed into a machine learning model to pre-

dict the number of CPU and GPU cores expected to yield

optimal performance. Dopia prepares the OpenCL kernel

for execution on integrated architectures by injecting code

that facilitates dynamic load balancing. Trained and evalu-

ated with 1,224 execution profiles of OpenCL kernels and

14 real-world OpenCL kernels, we have shown that Dopia

outperforms standard workload partitioning schemes by a

significant margin. The machine learning model is able to

select a configuration that lies within 10–20% of the best pos-

sible configuration. Dopia is a software-only solution that

does not require any hardware modification, and the ML

modeling features collected from a code analysis are applica-

ble to any processor. As integrated architectures continue to

evolve and their complexity increases, such software-only

approaches are likely to be of interest to a large group of

users.

The Dopia software framework, including all training data,

is available at https://csap.snu.ac.kr/software.
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