
MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 1

Performance Modeling of Parallel Loops on
Multi-Socket Platforms using Queueing Systems

Younghyun Cho, Surim Oh, Bernhard Egger

Abstract—Predicting the performance of parallel loops on modern shared-memory multi-socket multi-core systems in dependence of
the allocated resources is an important means to achieve better system utilization. Previous prediction techniques are tied to specific
architectures and do not allow for purely online performance predictions without requiring an offline analysis of the parallel program.
This paper presents a practical approach based on queueing theory to model the performance of parallel programs in dependence of
the number of allocated core resources. Based on the key insight that scalability of scientific parallel loops is limited by memory
performance, a hierarchically constructed M/M/1/N/N queue system is used to analytically compute the response time at the different
congestion points in the memory system of modern NUMA architectures. After automatically tuning the model to a specific architecture
by executing a number of micro-benchmarks, the required parameter values are obtained at runtime from hardware performance
counters present in modern commodity AMD and Intel processors. Evaluated with 24 OpenMP parallel loops on a 64-core AMD and a
72-core Intel multi-socket platform, the presented queueing system is able to accurately predict the speedup of parallel loops with a
mean absolute percentage error of 8.3% on the AMD system and 6.7% on the Intel platform.

Index Terms—Performance modeling, parallel loop, queueing system, multi-socket system, OpenMP, NUMA.

F

1 INTRODUCTION

PARALLEL LOOPS such as OpenMP’s parallel for [1] are
the basic parallel programming construct on shared-

memory platforms. Understanding the performance of par-
allel loops is important for optimizations as these loops
dominate the execution time of many scientific applications.
Such parallel loops are usually executed with a config-
urable number of worker threads managed by a runtime
system [2], [3], [4] to maximize the performance or to meet a
certain performance goal. Modeling performance of parallel
loops in dependence of the number of threads therefore has
been an important research issue.

One approach to modeling performance of parallel pro-
grams employs queueing models. Based on stochastic pro-
cesses, queueing models are analytical tools to evaluate
the performance of queueing systems such as the mean
waiting time, the queue length, and the server utilization [5].
Previous work [6], [7], [8] predicts the performance scalabil-
ity of parallel programs by computing the mean response
time of memory requests for a varying number of threads.
These approaches regard the threads of parallel programs
as queueing customers accessing memory system resources,
and the memory system as the queueing server. Queueing
models are not only computationally efficient thanks to
their closed-form expressions, but also allow predicting the
speedup of parallel programs and provide insights into the
response time and utilization of the memory system.

• Younghyun Cho and Bernhard Egger� are with the School of Computer
Science and Engineering, Seoul National University, Seoul, Korea.
E-mail: younghyun, bernhard@csap.snu.ac.kr.

• Surim Oh was with the School of Computer Science and Engineering,
Seoul National University. She is now with SAP Labs Korea, Seoul, Korea.
She contributed this paper when she was in Seoul National University.
E-mail: surim.oh@sap.com

Applying queueing models to modern multi-core sys-
tems in practice, however, remains a challenge. Large shared
memory systems, called multi-socket multi-core systems,
comprise multiple processor sockets and memory con-
trollers connected by an interconnection network. Memory
operations from cores thus contend for both the memory
controllers and the interconnection links. Such architectures
require a proper queueing network to model the differ-
ent contention points. Moreover, memory systems act dif-
ferently on read and write memory operations and per-
form hardware-level optimizations such as data sharing
and prefetching. The effectiveness of such optimizations
depends on the parallel program and the number of worker
threads. Consequently, memory systems provide different
service rates that depend on the workload. Existing tech-
niques [6], [7], [8] employ simple queueing systems that do
not properly consider the different contention points in the
memory system and ignore the effects of hardware opti-
mizations. These simplifications render existing techniques
ineffective on modern hardware architectures.

This paper presents a practical approach to model per-
formance of parallel for loops without loop-carried depen-
dencies on multi-socket multi-core systems using queueing
systems. First, runs of OpenMP parallel loops on real sys-
tems confirm that the M/M/1/N/N queueing model [5] is
adequate to model parallel loops on multi-cores systems.
The architecture of multi-socket systems is reflected by a
hierarchically constructed M/M/1/N/N queueing system that
is able to compute the mean response time of memory re-
quests at each memory controller and each interconnection
link. To deal with the varying memory system performance
in the presence of hardware optimizations, the service rates
of memory controllers and interconnection links are com-
puted based on the ratio between memory read, write, and
prefetch operations of a given workload. The presented ap-

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 2

proach can be easily applied to different platforms because
all information required to compute the parameter values
of the queueing systems is obtained from existing hardware
performance counters on AMD and Intel systems.

The queueing system is used to construct a speedup
model that is able to predict the performance scalability
of parallel loops on multi-socket systems. An evaluation
with 24 OpenMP parallel loops shows that, on average, the
model achieves a mean absolute percentage error of 8.3%
on a 64-core AMD and 6.7% on a 72-core Intel platform. The
results demonstrate that the presented queueing system is
able to provide accurate information about the performance
of memory controllers and interconnection links in multi-
socket multi-core systems.

To summarize, this paper makes the following contribu-
tions.

• A summary of the key assumptions to apply queue-
ing systems to model parallel loops on multi-socket
systems, and an experimental study that shows how
the targeted parallel loops can be modeled using
M/M/1/N/N queueing systems (Section 3).

• A methodology to model memory system perfor-
mance on multi-socket multi-core platforms using a
hierarchical queueing system (Section 4).

• A speedup model that is able to predict the speedup
of OpenMP parallel loops based on the queueing
system (Section 5).

• An evaluation of the presented speedup model for
24 OpenMP parallel loops on an AMD and an Intel
multi-socket multi-core platform (Section 6).

In addition, Section 2 introduces the necessary back-
ground on OpenMP parallel loops and queueing systems.
Section 7 discusses the limitations of the presented ap-
proach, and Section 8 compares the presented approach
with related work. Section 9, finally, concludes this paper.

2 BACKGROUND

2.1 Parallel Loops in OpenMP

OpenMP [1] is the most widely used parallel program-
ming model for shared-memory systems. Parallel loops
annotated with the parallel for pragma are the basic
mechanism to initiate parallelism in OpenMP applications.
In an OpenMP parallel loop, the outermost loop iterations
represent the smallest parallel unit of work.

OpenMP supports three loop scheduling methods: static,
dynamic, and guided. Programmers can select a schedul-
ing discipline by annotating the specific method to the
parallel for pragma. Static scheduling, selected by
schedule(static), divides and assigns the loop itera-
tions of a parallel loop equally to the worker threads. This
policy benefits from a small dispatch overhead but may suf-
fer from load imbalance. With dynamic scheduling, selected
by schedule(dynamic), loop iterations are assigned to
the worker threads at runtime; this process is illustrated by
Fig. 1 for the GNU OpenMP (GOMP) runtime system [9].
Each thread repeatedly fetches and executes a fixed number
of loop iterations from the global shared work_share data
structure until there is no more work. Guided scheduling,

#pragma omp parallel for schedule(dynamic)
for (int i = 0; i < N; i++)
 foo(i); /* computation */

work_share

start

end

processed next work

worker
threads

(1) call for work_share to compute
next iteration bound

(2) get next iteration bound (start, end)

(3) execute work with iteration bound
for (i = start; i < end; i++) foo(i);

if there is new work

iteration bound = 3

Fig. 1. Dynamic loop scheduling in the GOMP runtime system.

annotated by schedule(guided), operates similar to dy-
namic scheduling but dynamically adjusts the number of
loop iterations assigned to a thread. Li’s guided schedul-
ing [10], for example, assigns ditems/2Ne loop iterations
where items represents the number of remaining loop iter-
ations and N stands for the number of worker threads.

2.2 Queueing Models

Queueing models that compute the waiting time of queue-
ing systems using stochastic processes have often been
used for operations research in computer science such as
designing system architectures or developing scheduling
policies [11]. They are also well-suited to analytically model
the performance of shared resources such as memory con-
trollers [6], [8], [12] and network switches [13]. The fo-
cus of this work is on modeling the performance of the
shared memory system. In the following, we briefly dis-
cuss two well-known queueing models, the M/M/1 and the
M/M/1/N/N model. For details about queueing models the
interested reader is referred to [5], [14].

2.2.1 The M/M/1 Model
The M/M/1 model is the simplest and most popular queue-
ing model. An M/M/1 queueing system, illustrated in
Fig. 2 (a), considers requests from an infinite number of
customers and one single server. The arrivals of the requests
follow a Poisson distribution, and the server has an expo-
nential service time. The requests are served in First-In-First-
Out (FIFO) order. For an arrival rate λ and a service rate µ,
µ > λ, the mean waiting time r is given by Little’s Law.

r =
1

µ− λ
(1)

Previous research [6], [7] often employed the M/M/1
queueing model to model memory performance on multi-
cores where cores are considered to be queueing customers.
In multi-core systems with a finite number of cores, how-
ever, the presence of more or fewer cores can have a strong
effect on the distribution of memory requests which calls for
a queueing model for a finite number of customers.

2.2.2 The M/M/1/N/N Model
For a finite number of customers, the M/M/1/N/N model,
also known as the “machine repair problem”, can be ap-
plied. It consists of N customers, a waiting line having N
entries with FIFO discipline, and one server, as shown in
Fig. 2 (b). The requests of the customers follow a Poisson
distribution, and the server has an exponential service time.

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 3

λ
Server

Infinite
 customers

µ

Infinite
waiting line

(a) The M/M/1 queue

µ

λ
Customers (N)

λ
1 Server...

Waiting line (N)

N

(b) The M/M/1/N/N queue

Fig. 2. The queueing systems. In the M/M/1 system (a), λ represents
the server request rate from infinite queueing customers, and in the
M/M/1/N/N system, λ represents the mean server request rate per
customer. In both systems, µ represents the server’s mean service rate.

In the M/M/1/N/N model, once a request has been issued
from a customer, the customer does not send a new request
until the previous request has been served. Given an arrival
rate λ per customer and a service rate µ, the mean waiting
time r is given by Equation 2.

r =
1

µ
(
N

Us
− µ

λ
) (2)

Us, representing the server’s utilization, is computed by

Us = 1−
(

N∑
k=0

N !

(N − k)!
(
λ

µ
)k
)−1

(3)

In this work, the M/M/1/N/N model is applied to model
the mean memory response time on multi-socket systems.

3 INSIGHTS OF PARALLEL LOOP PERFORMANCE

This section justifies the application of the M/M/1/N/N
queueing model to predict the performance of scientific par-
allel loops on modern out-of-order NUMA systems through
experiments on actual architectures.

3.1 Queueing Models and Multi-Socket Systems
Multi-socket systems contain multiple processor sockets
and memory controllers to provide the necessary memory
bandwidth to a large number of cores. A node consists of a
CPU node that itself is composed of a group of CPU cores
and an attached memory node. The individual nodes are
connected by an interconnection network such as AMD’s
Hyper Transport (HT) [15] or Intel’s Quick Path Interconnect
(QPI) [16]. Memory requests of a CPU node are sent to
a buffer and served by the interconnection network that
enables each CPU node to access all memory nodes. Such
architectures typically exhibit Non-Uniform Memory Access
(NUMA) characteristics because of the varying access laten-
cies from the cores to the different memory controllers.

Queueing models require an even, Poisson-distributed
request distribution from all customers. In addition, cus-
tomers wait for their requests to complete before issuing
a new request. Even though these requirements are not
satisfied in general by multi-socket multi-core systems, the
following key observations allow us to apply M/M/1/N/N
queueing systems to such architectures.

• The presented approach models performance of sci-
entific parallel loops where memory wait time is
the major limiting factor of scalability. The memory
access pattern of common workloads satisfies the
requirement of even and Poisson-distributed request
distributions as demonstrated in Section 3.3.2.

TABLE 1
Selected parallel loops.

Loop App Input size Loop App Input size

x solve BT class D rhs5 SP class D
y solve BT class D x solve SP class D
z solve BT class D y solve SP class D
add BT class D z solve SP class D
conj grad2 CG class D txinvr SP class D
cffts1 FT class C tzetar SP class D
cffts2 FT class C rprj3 MG class D
cffts3 FT class C psinv MG class D
rhs1 SP class D interp1 MG class D
rhs2 SP class D resid MG class D
rhs3 SP class D main BS native
rhs4 SP class D tiling1 FM native

• Processor cores execute instructions out-of-order and
can issue several memory requests. In addition, re-
quests can be reordered by caches and memory
controllers [17], [18]. These properties do not satisfy
the requirements of the queueing models, however,
the presented approach models the average mean
memory request time for a large number of requests
in the steady state. In this case, reordering or parallel
individual requests do not invalidate the model.

• Each memory operation is served by an interconnec-
tion link and a memory controller. A memory con-
troller can receives requests from all CPU nodes; the
number of inputs of an interconnection link depends
on the architecture.

• Multiple queueing systems are used to model the
performance on the multiple contention points. First,
we use separate queueing systems to model memory
response time at each interconnection link and each
memory controller. Additionally, another queueing
system is used to model the thread stall time on each
CPU core. Section 4 details this approach.

3.2 Parallel Loops

We mainly target scientific OpenMP parallel loops that are
used in HPC and big data computing. Table 1 shows the
parallel loops used for performance modeling and eval-
uation throughout this paper. The loops were obtained
from the NAS parallel benchmark suite (NPB) [19], [20]
containing HPC workloads and two OpenMP applications
from the Parsec benchmark suite [21], Blackscholes (BS) and
Freqmine (FM). We did not evaluate loops that perform data
initialization because such loops are usually executed only
once to activate the placement of the data under a given
NUMA allocation policy. In total, 24 different parallel loops
are selected from the seven parallel applications.

The assumptions of the presented model and the justifi-
cations for the selected parallel loops are as follows:

• Memory requests of parallel loops follow a Poisson
distribution, and memory service times are expo-
nential. These assumptions are a requirement of the
M/M/1/N/N model and verified based on experi-
ments in Sections 3.3.2 and 3.3.4.

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 4

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

m
em

m
em

m
em

m
em

L
L
C

L
L
C

L
L
C

L
L
C

m
em

m
em

m
em

m
em

L
L
C

L
L
C

L
L
C

L
L
C

(a) 64-core AMD platform

CPU CPU

m
em

L
L

C

CPU CPU

m
em

L
L

C

Memory controller

Interconnection link

m
em

m
em

L
L

C
L

L
C

(b) 72-core Intel platform

Fig. 3. Block diagram of the target multi-socket multi-core platforms.

• Synchronization overhead is not considered. In other
words, loops have no loop carried dependencies and
do not suffer from load imbalance. Most loops of
NPB applications (Table 1) do not have dependen-
cies. Experiments in Section 3.3.5 show that most of
the targeted loops exhibit a good load balance.

• Similarly, atomic operations or critical sections are
not considered. Modeling the performance of atomic
operations and critical sections is difficult in practice.
For example, the number of issued atomic operations
to obtain a lock is not deterministic. Moreover, such
operations are rarely used in data intensive loops.

• Parallel loops are dynamically scheduled (Sec-
tion 2.1) because this policy allows runtime systems
to dynamically adjust the number of threads [2], [3].
Section 7 discusses the effects of other scheduling
schemes on performance modeling.

3.3 Performance Analysis

3.3.1 Evaluation Environment
This work is verified and evaluated on two multi-socket
platforms, a 64-core AMD Opteron and a 72-core Intel Xeon
system. The AMD platform, shown in Fig. 3 (a), comprises a
total of eight CPU nodes in four physical processor packages
(AMD Opteron 6380 [22]) and 128 GB of memory. Each CPU
node contains eight computing cores that share a last-level
cache (LLC) of 12 MB. The processor nodes are connected by
AMD’s Hyper Transport [15] with a maximum hop distance
of two. The Intel system, shown in Fig. 3 (b), has four
Intel Xeon E7-8870 v3 processors [23] each consisting of
18 cores sharing a 45 MB LLC. The system is equipped
with 512 GB of memory. Each processor represents a CPU
node, the four nodes are connected with Intel’s QPI [16]. All
benchmarks are run with the interleaved NUMA memory
allocation policy.

3.3.2 Memory Access Distribution
The assumption of the M/M/1/N/N model that memory
accesses from worker threads follow a Poisson distribution
is verified by measuring the number of memory requests
over a fixed interval on the AMD and the Intel platform.
The collected numbers of memory requests at each memory
node for the entire run of the parallel loop are plotted in
Fig. 4 and Fig. 5 using a probability mass function (PMF).
The figures show that the vast majority of memory requests
per time is distributed around the expected value, and

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

mem8
mem7
mem6
mem5

mem4
mem3
mem2
mem1

(a) x solve (BT)

0.0

0.1

0.2

200k 400k 600k 800k 1M
Memory requests per 1ms

(b) x solve (SP)

Fig. 4. PMF of the number of memory requests per time for each
memory node on the 64-core AMD platform.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

200k400k600k800k 1M

P
ro

b
ab

il
it

y

Memory requests per 1ms

mem4
mem3
mem2
mem1

(a) x solve (BT)

0.0

0.1

200k 400k 600k 800k 1M
Memory requests per 1ms

(b) x solve (SP)

Fig. 5. PMF of the number of memory requests per time for each
memory node on the 72-core Intel platform.

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07
 9e+07

8 16 24 32 40 48 56 64

#
 o

p
er

at
io

n
s

CPU cores

(a) cffts1 (FT)

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07
 9e+07
 1e+08

8 16243240485664

CPU cores

(b) cffts2 (FT)

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

8 16 24 32 40 48 56 64

#
 o

p
er

at
io

n
s

CPU cores

Prefetches
Reads
Writes
LLC misses

(c) cffts3 (FT)

Fig. 6. Number of memory operations of parallel loops for a varying
number of worker threads on the AMD platform.

the variance increases with a higher expected value. In
addition, all memory nodes exhibit the Poisson property.
For the sake of simplicity, the figures present the results for
only the x solve loops of BT and SP. The supplementary
materials contain the PMF of all targeted parallel loops
on both architectures as well as the results of the two-
sample Kolmogorov-Smirnov (KS) test [24] confirming that
the majority of the loops follows a Poisson distribution.

3.3.3 Memory Access Pattern

Modern memory systems perform optimizations such as
memory prefetch operations that can cause a variation in
the memory access pattern. Fig. 6 shows the number of
memory operations collected from hardware performance

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 5

counters for the three parallel loops cffts1–3 of FT with a
varying number of worker threads.

The memory access pattern varies for different work-
loads and the number of worker threads. For example, in
Fig. 6 (c), the total number of memory requests in cffts3
decreases with an increasing number of threads because the
loop can benefit from data sharing. For cffts1 in Fig. 6 (a), on
the other hand, the number of memory operations increases
for a larger number of threads. Therefore, an M/M/1/N/N
queueing system needs to use a changing memory request
rate when modeling the memory response time for a vary-
ing number of threads. In addition, different programs
have different ratios between the read, write, and prefetch
operations. The following section analyzes this effect on the
service rate of the memory system.

3.3.4 Memory Service Rate
On multi-socket systems, the requested data is transmitted
through an interconnection link and a memory controller.
We measure the service rate µj of an arbitrary memory con-
troller j and the data transfer rate δij of the interconnection
link that connects CPU node i with memory controller j
for the four synthetic workloads StreamWrite, StreamLoad,
StreamCopy, and StreamAdd from the Stream benchmark
suite [25]. The following code shows the StreamWrite work-
load that writes a scalar value to the elements of an array.

1: for (int i=0; i<stride; i++)
2: for (int j=i; j<arr_size; j+=stride)
3: A[j] = scalar;

The other workloads execute different types of opera-
tions in line 3. StreamLoad executes sum+=A[j] and thus
generates only memory read operations. StreamCopy exe-
cutes A[j]=B[j], generating one memory write for A[j]
and two memory reads for A[j] and B[j]. Last, Strea-
mAdd’s code A[j]=B[j]+C[j] consists of three memory
read and one memory write operations.

Fig. 7 shows the number of memory operations of the
synthetic workloads for varying stride values. The values
are set such that the workload is completely memory bound.
Similar to the observation from Fig. 6, different synthetic
workloads in Fig. 7 have different ratios between memory
read, write, and prefetch operations. To compute µj , the
data of the arrays A, B, and C is allocated to memory node j.
The workload is executed on one core in CPU node j using
one thread, and the total runtime of the workload, denoted
total execution timejj , is measured. Since all memory accesses
are served by the local memory node without passing
through other interconnection links, the mean service rate
of memory controller j can be computed by

µj =
total memory operations

total execution timejj
(4)

To compute the service rate of an interconnection link
δij , the total execution timeij is measured by executing the
workload on a core in CPU node i and the data located in
memory node j. The execution time of such an allocation
includes the data transfer time through the interconnection
link and the memory controller. The data transfer rate of the
interconnection link is computed as follows.

δij =
total memory operations

(total execution timeij − total execution timejj)
(5)

 0
 1e+08
 2e+08
 3e+08
 4e+08
 5e+08
 6e+08
 7e+08
 8e+08
 9e+08
 1e+09

8

1
6

3
2

6
4

1
2
8 8

1
6

3
2

6
4

1
2
8 8

1
6

3
2

6
4

1
2
8 8

1
6

3
2

6
4

1
2
8

#
 o

p
er

at
io

n
s

Stride value

StreamWrite

StreamLoad

StreamCopy

StreamAdd# Writes
Reads
Prefetches
LLC Misses

Fig. 7. Number of memory operations of synthetic workloads (using one
CPU thread) with different stride values on the AMD platform.

 0

 200

 400

 600

 800

 1000

 1200

 1400

µ1 δ12 δ13 δ14 δ15 δ16 δ17 δ18

#
 r

eq
u
es

ts
 /

 u
s stride 8

stride 16
stride 32
stride 64
stride 128

(a) StreamWrite

 0

 200

 400

 600

 800

 1000

 1200

 1400

µ
1

δ
12

δ
13

δ
14

δ
15

δ
16

δ
17

δ
18

(b) StreamLoad

 0

 100

 200

 300

 400

 500

 600

 700

µ1 δ12 δ13 δ14 δ15 δ16 δ17 δ18

#
 r

eq
u
es

ts
 /

 u
s

(c) StreamCopy

 0

 100

 200

 300

 400

 500

 600

 700

µ
1

δ
12

δ
13

δ
14

δ
15

δ
16

δ
17

δ
18

(d) StreamAdd

Fig. 8. Measured service rates for the synthetic workloads on the AMD
platform for varying stride values. µ1 represents the service rate of
memory controller 1, and δ1 2−8 represents the service rate of the inter-
connection links connecting CPU node 1 and memory controllers 2–8.

Fig. 8 shows the measured service rates of memory
controller 1 and the interconnection links between CPU
node 1 and memory nodes 2–8 on the AMD system for the
four synthetic workloads from Fig. 7. We observe that the
memory service rate depends on the workload. For example,
comparing StreamWrite (Fig. 8 (a)) and StreamLoad (Fig. 8 (b))
reveals that StreamWrite tends to have higher memory ser-
vice rates than StreamLoad, suggesting that a higher ratio
of memory write operations causes a higher service rate. In
addition, in StreamCopy (Fig. 8 (c)) and StreamAdd (Fig. 8 (d)),
the service rates tend to be higher with a stride value of
32 because there are a larger number of memory prefetch
operations as visible in Fig. 7. The experiments demonstrate
that it is necessary to consider the memory access pattern of
the given workload to compute the memory service rate.

The M/M/1/N/N model assumes that the server exhibits
exponential service times. Similar to the analysis of memory
accesses in Section 3.3.2, this assumption is justified using
the KS test for the synthetic workloads. The details are
provided in the supplementary materials.

3.3.5 Synchronization Overhead

Parallel loops have implicit barriers at the end of the loops
that can affect the performance of the parallel loops if
the load is unbalanced. Here, we investigate the effect of
this implicit barrier by measuring the load balance ratio.

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 6

 0

 0.2

 0.4

 0.6

 0.8

 1

x_
so

lv
e
(B

T)

y_
so

lv
e
(B

T)

z_
so

lv
e
(B

T)

ad
d

(B
T)

co
nj

_g
ra

d2
 (C

G
)

cf
fts

1
(F

T)

cf
fts

2
(F

T)

cf
fts

3
(F

T)

rh
s1

 (S
P)

rh
s2

 (S
P)

rh
s3

 (S
P)

rh
s4

 (S
P)

rh
s5

 (S
P)

x_
so

lv
e
(S

P)

y_
so

lv
e
(S

P)

z_
so

lv
e
(S

P)

tx
in

vr
 (S

P)

tz
et

ar
 (S

P)

rp
rj3

 (M
G

)

ps
in

v
(M

G
)

in
te

rp
1

(M
G

)

re
si
d

(M
G

)

m
ai

n
(B

S)

til
in

g1
 (F

M
)

G
eo

m
ea

n

L
o

ad
 b

al
an

ce
 r

at
io

(a) 64-core AMD platform.

 0

 0.2

 0.4

 0.6

 0.8

 1

x_
so

lv
e
(B

T)

y_
so

lv
e
(B

T)

z_
so

lv
e
(B

T)

ad
d

(B
T)

co
nj

_g
ra

d2
 (C

G
)

cf
fts

1
(F

T)

cf
fts

2
(F

T)

cf
fts

3
(F

T)

rh
s1

 (S
P)

rh
s2

 (S
P)

rh
s3

 (S
P)

rh
s4

 (S
P)

rh
s5

 (S
P)

x_
so

lv
e
(S

P)

y_
so

lv
e
(S

P)

z_
so

lv
e
(S

P)

tx
in

vr
 (S

P)

tz
et

ar
 (S

P)

rp
rj3

 (M
G

)

ps
in

v
(M

G
)

in
te

rp
1

(M
G

)

re
si
d

(M
G

)

m
ai

n
(B

S)

til
in

g1
 (F

M
)

G
eo

m
ea

n

L
o

ad
 b

al
an

ce
 r

at
io

(b) 72-core Intel platform.

Fig. 9. Measured load balancing ratio for the parallel loops.

The load balance ratio is computed by comparing the
turnaround time of the two worker threads that take the
longest (tlongest) and the shortest (tshortest) to complete
their execution (Load balance ratio = tshortest/tlongest).

Fig. 9 shows the measured load balance ratio for the 24
parallel loops on the AMD and the Intel platform. As shown
in the figure, many loops have a high load balance ratio
(larger than 0.9). This implies that, for many parallel loops
the overhead from load imbalance is limited to only a frac-
tion of the overall performance. Based on this observation,
such overhead is not modeled in this work. Several loops
(rprj3, psinv, and interp1) of the MG application, however,
exhibit a low load balance ratio. The MG application is based
on an unstructured grid where the inner loops have different
loop iteration bounds. The tiling1 loop contains an inner
loop with varying iteration counts and also conditional
branches that cause this load imbalance.

3.3.6 Summary

The performance analysis shows that the M/M/1/N/N queue-
ing model is adequate to model memory requests of parallel
loops. For the majority of loops, the distribution of the
memory accesses exhibits a Poisson distribution, and the
limited amount of synchronizations during the execution of
parallel work units allows us to focus on memory system
performance as the limiting factor of program scalability.
The analysis, however, also shows that there are challenges
to use a queueing model when computing the mean mem-
ory request rate and the memory service rate for a varying
number of worker threads. These parameter values need to
be carefully computed for accurate performance modeling.

4 QUEUEING SYSTEMS FOR MULTI-SOCKET AR-
CHITECTURES

This section shows how to employ the M/M/1/N/N queue-
ing model to model memory performance on multi-socket
multi-core architectures.

4.1 Hierarchical Queueing Systems

The presented approach employs different queueing sys-
tems to model the memory response time of a NUMA
multi-socket system. The response time of a memory read
request observed by an individual CPU core is composed
of the service time of the LLC, the interconnection link,
and the memory controller. The architectural contention
points are modeled by individual queueing models for each
memory controller, each interconnection link, and each last-
level cache. A multi-socket system with two CPU nodes
and two memory nodes as shown in Figure 10 is used for
the explanations. Each CPU node has four cores and an
LLC. The shaded boxes in the figure depict the contention
points observed by a core in CPU node 1 issuing a memory
read request to memory node 2. Each contention point is
modeled by an M/M/1/N/N queueing system. Memory wait
time manifests in the form of stalled threads waiting for LLC
read misses to complete. This stall time is modeled by the
queueing system illustrated in Fig. 10 (c). The contention at
the memory controller and the interconnection network is
considered by the queueing systems shown in Fig. 10 (a)
and (b). In these queueing systems, memory requests are
served for each CPU node via an interconnection network,
and the queueing systems model the response time for a
varying number of CPU nodes. Unlike the model for the
LLC wait time that only considers memory read operations,
the contention models at the interconnection links and the
memory controllers also consider the effect of memory write
and prefetch operations. Fig. 11 depicts these queueing
systems. The input parameters of the queueing systems
and the modeled performance are described in Table 2 and
Table 3, respectively. Details of each model are presented in
the following sections.

4.1.1 Queueing System for Memory Controllers

Fig. 11 (a) shows the queueing system for memory controller
2 (M2) of the two-node system from Fig. 10. There are two
queueing customers, CPU node 1 and 2 with a memory
request rate (MRR) to memory node 2 of MRR12 and MRR22,
respectively (refer to Table 2). λM2

in Equation 2 is given by

λM2
= (MRR12 + MRR22)/2

where MRR12 and MRR22 represent the memory request
rate from CPU node 1 and 2, respectively. With the request
rate λM2

and the memory service rate µ2 of memory con-
troller 2, Equation 2 yields MRTM2

, the mean response time
of memory controller 2.

This approach can be generalized for an arbitrary multi-
socket system. For a system with N nodes, a memory
controller j is considered a queueing server that serves the
resources of DRAM chips with a mean service rate of µj , and
CPU node i is considered a queueing customer that accesses
the server with a mean request rate of MRRij . Using the
average mean request rates of all CPU nodes to memory
node j

λMj =

∑N
i=1MRRij

N
(6)

and the service rate µj , Equation 2 computes the mean
response time of memory controller j, MRTMj .

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 7

(a) Queueing system for
 a memory controller

memory node 2

(c) Queueing system
for an LLC miss

memory node 1

CPU node 2

LLC

DRAM chip

core core core core

CPU node 1

core core

LLC

core core

DRAM chip

memory
controller

(b) Queueing system for
an interconnection link

Interconnection
link

memory
controller

Fig. 10. A two-socket multi-core system and the data path for an LLC
miss of CPU node 1 to be served by memory node 2.

4.1.2 Queueing System for Interconnection Links

Contention at interconnection links is modeled by a separate
queueing system. In a fully-connected network such as
Intel’s QPI, contention cannot occur at the interconnection
links and no modeling is required. Architectures such as
AMD’s HT share interconnection links whose response time
can be modeled as follows. The interconnection link, as
shown in Fig. 10, serves requests from CPU node 1 to
memory node 2 and from CPU node 2 to memory node 1.
The queueing system, shown in Fig. 11 (b), treats CPU
nodes 1 and 2 as customers to obtain the link’s request rate
λL12

= (MRR12 + MRR21)/2. Equation 2 is applied to com-
pute the the mean response time MRTL12

of interconnection
link L12 with the mean transfer rate δ12.

In general, for an interconnection link Lij connecting
CPU node i with memory node j at a service rate δij , all
memory request rates from all CPU nodes that are served by
interconnection link Lij need to be considered. The average

TABLE 2
Input parameters of the queueing systems.

MRRij

mean memory request rate from CPU node i to memory
node j; it considers all read, write, and prefetch memory
operations

LLCkij
mean LLC miss rate from CPU core k in CPU node i to
memory node j; it considers only read LLC misses

µj mean service rate of memory controller j

δij
mean data transfer rate of an interconnection link con-
necting CPU node i with memory controller j

TABLE 3
Modeled performance information from the queueing systems.

MRTMj

mean response time of memory requests at memory
controller j

MRTLij

mean response time of memory requests at interconnec-
tion link connecting CPU node i with memory node j

TRTij
total mean response time for memory requests from
CPU node i to be served by memory node j

LRTij
mean response time for LLC misses from CPU node i to
be served by memory node j

CPU
node 1 δ12

DRAM chip

1/(MRTL12
+MRTM2

)

L12

Interconnection
link

L12

Interconnection
link

MRR12

MRR21

(c) Modeling LRT12 the mean response time of LLC misses from
 CPU node 1 that are served by memory node 2

CPU
node 2

CPU
node 1 µ2

MRR12

MRR22

MRTM2

CPU
node 2 DRAM chip

memory controller 2

LLC112

LLC412

CPU node 1

2
1

4
3

(b) Modeling MRTL12
 the mean response time of the interconnection

 link connecting CPU node 1 and memory node 2 (L12)

(a) Modeling MRTM2
 the mean response time of memory controller 2

LRT12

LLC212

LLC312LLC

hit miss

MRTL12

M2

M2

Fig. 11. The hierarchical queueing systems for the data path of Fig. 10.

of the memory request rates λLij
is computed as follows.

λLij
=

∑N
l=1

∑
k∈LSetlij

MRRlk

N
(7)

where LSetlij is the set of memory controllers accessed
from CPU node l passing through link Lij . These sets are
constructed according to the interconnection topology of the
target architecture. Using Equation 2, we can compute the
mean response time of the interconnection link MRTLij

.

4.1.3 Queueing System for LLC Misses
The queueing systems from the preceding two sections
compute the mean response time of each memory controller
(MRTMj

) and each interconnection link (MRTLij
). For a

memory request from CPU node i to be served by memory
node j, the total mean response time TRTij is given by

TRTij = MRTMj
+ MRTLij

(8)

This response time, however, is not sufficient to model
the performance of parallel threads. The insight is that cores
(i.e., threads) are stalled only for memory read requests
occurring from LLC misses. In other words, the threads
keep executing while memory write operations or prefetch
operations are being served. It is therefore necessary to com-
pute the response time of LLC misses that stall a thread’s
execution. Fig. 11 (c) shows the queueing system to model
the response time for an LLC miss from CPU node 1 handled
by memory node 2. All cores within the same CPU node
constitute the queueing customers. Assuming a crossbar
switch, a CPU node’s LLC misses that access the same
memory node are served in FIFO order while accesses to

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 8

different memory nodes can be processed simultaneously.
For the input request rate, the LLC miss rate per core is
considered, where LLCk12 represents the LLC miss rate for
memory node 2 from core k in CPU node 1. The service
rate of this queueing system is computed as 1/TRT12, that
means an LLC miss requires services from both the memory
controller and the interconnection link. Then, the queueing
model computes the mean response time LRT12 (Table 3).
The mean value of the response times obtained from this
queueing system represents the mean thread stall time for
LLC misses.

The LLC miss response time LRTij can be computed for
an arbitrary CPU and memory node i and j by replacing 1
and 2 with i and j, respectively. This LLC miss response
time is used to compute the performance scalability of
parallel loops in Section 5.

4.2 Computing the Parameter Values
4.2.1 Performance Counters
To compute the parameter values of the queueing sys-
tems, the number of memory operations at each mem-
ory controller and the number of LLC misses at each
CPU node are collected. AMD’s NorthBridge [26] and
Intel’s uncore events [27] provide the necessary perfor-
mance counters. Linux’s perf interface is used to query
the performance counters. The Memory Controller
Requests (NBPMCx1F0) counter measures the number
of memory operations at each memory controller, and
L3 Cache Misses (NBPMCx4E1) counts the number of
LLC misses. Similarly, on the Intel platform, we use
UNC_H_IMC_WRITES/READS to measure the number of
memory operations and OFFCORE_RESPONSE:L3_MISS to
count the number of LLC misses for each node.

As outlined in Table 2, the presented queueing systems
require the parameters MRRij , LLCkij , µj , and δij . The
following section discusses the computation of the param-
eter values from the performance counters obtained from a
profiling run for a given number of worker threads.

4.2.2 Memory Request Rate and LLC Miss Rate
The value of MRRij , referring to the number of memory
requests per time in the steady state, is computed as follows.

MRRij =
Requestsij
CPU Time

(9)

where # Requestsij is the number of memory requests issued
from CPU node i to memory node j. Since # Requestsij is col-
lected in the steady state of a workload, it already includes
the effects of different cache write miss policies. CPU Time
denotes the execution time of threads excluding the stall
times caused by the LLC misses. Threads are assumed to
have the same execution time with perfect load balance.

Similarly, the LLC miss rate is computed as the number
of LLC misses per time as follows.

LLCkij =
LLC Misskij

CPU Time
(10)

where # LLC Misskij is the number of LLC misses issued
from core k in CPU node i and served by memory node j.

Measuring CPU Time is not trivial because existing pro-
cessors can measure only the total runtime, Total Time, that

includes the memory response times. Total Time is defined as
CPU Time plus the response times for LLC misses as follows.

Total Time = CPU Time+
N∑
j=1

(
C∑
k=1

LLC Misskij ·LRTij) (11)

where C represents the number of cores in a CPU node,
and LRTij is computed from the queueing system given in
Section 4.1.3. Solving Equation 11 for CPU Time is not trivial
because the queueing system for LRTij requires CPU Time
to compute the input parameters of MRRij and LLCkij . To
compute CPU Time with a reasonable overhead, we use an
iterative method using Equation 12.

CPU Timek+1 = Total Time−
N∑
j=1

(
C∑
k=1

LLC Misskij · LRTkij)

(12)
LRTkij and CPU Timek+1 are iteratively computed based on
CPU Timek. Since Total Time ≥ CPU Time, the initial input of
CPU Time0 is set to Total Time. Five iterations were empiri-
cally determined to be sufficient on both architectures.

The method presented in this section computes the
parameter values from the measured performance counter
values. However, as explained in Section 3.3.3, the memory
request rate changes for a varying number of threads. A
practical profiling method that considers varying memory
request rates in dependence of thread counts is discussed in
Section 5.2.2.

4.2.3 Memory Service Rate

The mean service rate, MSR, µj for memory controller j and
δij for interconnection link Lij , is computed from the mean
service time MST, MSR = 1/MST. As discussed in Section 3,
the service rate of the memory resources varies depending
on the ratio between memory operations.

A linear equation is used to compute the mean service
time for each memory controller and interconnection link.
For example, Equation 13 computes the mean service time
for memory controller j.

MSTµj = αµj ·
Prefetches
Requests

+βµj ·
Reads

Requests
+γµj ·

Writes
Requests

(13)
To compute the coefficient values of αµj

, βµj
, and γµj

,
the four synthetic workloads from Section 3.3.4 are executed
with varying stride values (8, 16, 32, 64, 128) and the
MSTµj

is measured for each configuration. The coefficient
values are obtained by applying linear regression to the
measured MSTµj

values. This procedure is performed for
each interconnection link Lij to calculate MSTLij

. Some
architecture may not support collecting the number of
prefetches of the L3 caches and the counts for read op-
erations include prefetches; this is the case for our Intel
platform. Once the coefficient values are obtained from the
synthetic workloads, the memory service time for varying
parallel programs is computed by using the collected num-
ber of memory read, write, and prefetch operations during
the profiling. Computing individual coefficients for each
workloads can increase the accuracy of the model but is
left for future work.

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 9

5 THE SPEEDUP PREDICTION MODEL

This section presents the speedup prediction model for
parallel loops. The model computes the thread stall times for
LLC misses from Section 4 for a varying number of threads.

5.1 The Speedup Model

For an N -node system, the speedup of parallel loops for
M number of CPU nodes each consisting of C cores is
computed as follows. Let CPU TimeS denote the CPU time
required to complete the workload when using a single
thread. Note that, CPU TimeS does not include thread stall
times. If there is no contention in the memory system
and assuming perfect load balancing, we can expect a
linear speedup and thus divide CPU TimeS by M · C . Let
Stall Time(M) be the total stall times of a thread for all LLC
misses from the thread when there are M · C threads. The
speedup for M CPU nodes, S(M), is given by

S(M) =
CPU TimeS/C + Stall Time(1)

CPU TimeS/(M · C) + Stall Time(M)
(14)

To compute Stall Time(M), the number of LLC misses
for each memory node is computed by multiplying the CPU
time per thread for M nodes (CPU TimeS/(M · C)) by the
LLC miss rate to each memory node j, LLCj (note that ∀k
and ∀i LLCj = LLCkij , because all threads have the same
memory access ratio to each memory node). Then, for each
memory node, the number of LLC misses to memory node
j is multiplied by the average of the mean response times
from M CPU nodes to memory node j,

∑M
i=1 LRTij/M .

Hence, the total stall time of a thread is computed by

Stall Time(M) =
N∑
j=1

(CPU TimeS
M · C

·LLCj ·
∑M
i=1 LRTij
M

)
(15)

where the value of LRTij is computed by applying the
M/M/1/N/N queueing systems from Section 4. The product
in the parentheses computes the total stall time of LLC
misses served by memory node j. The stall time is the sum
over all N memory nodes.

5.2 Implementation

The speedup prediction model has been implemented as a
library called LoopPerf. The GOMP runtime system (version
5.4) has been modified to allow control the number of
worker threads of a parallel loop. LoopPerf creates as many
worker threads as there are cores in the system. Each thread
is pinned to an individual core, parallelism is controlled
by putting threads on non-allocated cores to sleep. The
dynamic loop scheduler in our GOMP runtime system
determines the amount of work to assign to a core based
on the execution time of previous work. When fetching new
work, the GOMP runtime system increases the amount of
work assigned until it reaches an execution time of 30ms.
This threshold has empirically been found to yield good
results, but can be tuned for different architectures. LoopPerf
provides three different versions of performance prediction,
LoopPerf-S, LoopPerf-T, and Best-F. The following sections
discuss the implementation details.

5.2.1 LoopPerf-S (Single)
LoopPerf-S predicts the performance of a parallel loop based
on a single profiling run using one CPU node. For a parallel
loop, it collects the memory request rates and LLC miss
rates accessing to individual memory nodes. This assumes
that the memory request rates and the LLC miss rates are
constant for a varying number of threads.

5.2.2 LoopPerf-T (Twice)
As discussed in Section 3.3.3, the memory request rate
can vary depending on the number of threads. LoopPerf-T
considers such variations by allowing two profiling runs.
The first profiling uses one CPU node and collects the mean
memory request rate and LLC miss rate for each memory
node. The second profiling uses all CPU nodes and applies
linear regression to compute the parameter values for a
varying number of CPU nodes. To benefit from the speedup
information given by this option, therefore, a parallel loop
needs to be executed more than two times. This is not a big
concern because numerical applications usually execute the
same parallel loops dozens or hundreds times.

5.2.3 Best-F (Best Fixed parameter values)
Best-F from prior work [8] employs simpler M/M/1/N/N
queueing systems to model the speedup of parallel work-
loads and also does not take into account variations in the
workload’s memory service rate. Instead a fixed memory
service rate is used for all benchmarks. The service rate of
Best-F is found using an exhaustive search of the service
rates of memory controllers and interconnection links and
chooses the values that yield the minimum prediction errors
for the 24 parallel loops of Table 1. LoopPerf-S and LoopPerf-
T are compared to Best-F to show the benefits of the more
accurate queueing models and the variable memory service
rates. Section 8 discusses the differences and contributions
of this work over Best-F in more detail.

6 EXPERIMENTAL RESULTS

This section evaluates the presented speedup prediction
model with the 24 parallel loops from Table 1 on two
NUMA architectures, an AMD 64-core and and Intel 72-core
platform. Details of the platforms are given in Section 3.3.1.

The accuracy of the prediction model is validated us-
ing the mean absolute percentage error (MAPE). MAPE is
computed by taking the arithmetic mean of the percentage
errors based on the difference between the measured and
the predicted value. It is given by

MAPE =
100%

n

n∑
k=1

∣∣∣∣ak − pkak

∣∣∣∣ (16)

where ak represents the actual and pk the predicted value. In
addition to MAPE, the speedup prediction curves for both
platforms are presented in Fig. 12 (AMD) and Fig. 13 (Intel).

6.1 64-core AMD Opteron Platform
The results in Fig. 12 show that, in general, the presented
speedup model, LoopPerf-T accurately predicts the speedup
of the parallel loops with a geometric mean error of 8.3%
confirming that the speedup model can be practically used

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

(1) x
_solve (B

T)

(2) y
_solve (B

T)

(3) z
_solve (B

T)

(4) a
dd (B

T)

(5) c
onj_grad2 (C

G)

(6) c
fft

s1 (F
T)

(7) c
fft

s2 (F
T)

(8) c
fft

s3 (F
T)

(9) r
hs1 (S

P)

(10) r
hs2 (S

P)

(11) r
hs3 (S

P)

(12) r
hs4 (S

P)

(13) r
hs5 (S

P)

(14) x
_solve (S

P)

(15) y
_solve (S

P)

(16) z
_solve (S

P)

(17) tx
invr (

SP)

(18) tz
etar (

SP)

(19) r
prj3

 (M
G)

(20) p
sin

v (M
G)

(21) in
terp1 (M

G)

(22) r
esid

 (M
G)

(23) m
ain (B

S)

(24) ti
lin

g1 (F
M)

Geomean

M
A

P
E

 (
%

)

64-core AMD Opteron platformBest-F

LoopPerf-S

LoopPerf-T

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p
ee

d
u
p

CPU cores

Best-F
LoopPerf-S
LoopPerf-T
measurement

(1) x solve (BT)

8 16 24 32 40 48 56 64

CPU cores

(2) y solve (BT)

8 16 24 32 40 48 56 64

CPU cores

(3) z solve (BT)

8 16 24 32 40 48 56 64

CPU cores

(4) add (BT)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p
ee

d
u
p

CPU cores

(5) conj grad2 (CG)

8 16 24 32 40 48 56 64

CPU cores

(6) cffts1 (FT)

8 16 24 32 40 48 56 64

CPU cores

(7) cffts2 (FT)

8 16 24 32 40 48 56 64

CPU cores

(8) cffts3 (FT)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p
ee

d
u
p

CPU cores

(9) rhs1 (SP)

8 16 24 32 40 48 56 64

CPU cores

(10) rhs2 (SP)

8 16 24 32 40 48 56 64

CPU cores

(11) rhs3 (SP)

8 16 24 32 40 48 56 64

CPU cores

(12) rhs4 (SP)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p
ee

d
u
p

CPU cores

(13) rhs5 (SP)

8 16 24 32 40 48 56 64

CPU cores

(14) x solve (SP)

8 16 24 32 40 48 56 64

CPU cores

(15) y solve (SP)

8 16 24 32 40 48 56 64

CPU cores

(16) z solve (SP)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p
ee

d
u
p

CPU cores

(17) txinvr (SP)

8 16 24 32 40 48 56 64

CPU cores

(18) tzetar (SP)

8 16 24 32 40 48 56 64

CPU cores

(19) rprj3 (MG)

8 16 24 32 40 48 56 64

CPU cores

(20) psinv (MG)

 0
 1
 2
 3
 4
 5
 6
 7
 8

8 16 24 32 40 48 56 64

S
p
ee

d
u
p

CPU cores

(21) interp1 (MG)

8 16 24 32 40 48 56 64

CPU cores

(22) resid (MG)

8 16 24 32 40 48 56 64

CPU cores

(23) main (BS)

8 16 24 32 40 48 56 64

CPU cores

(24) tiling1 (FM)

Fig. 12. The predicted speedup and the measured speedup of the parallel loops on the 64-core AMD platform.

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 11

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

(1) x
_solve (B

T)

(2) y
_solve (B

T)

(3) z
_solve (B

T)

(4) a
dd (B

T)

(5) c
onj_grad2 (C

G)

(6) c
fft

s1 (F
T)

(7) c
fft

s2 (F
T)

(8) c
fft

s3 (F
T)

(9) r
hs1 (S

P)

(10) r
hs2 (S

P)

(11) r
hs3 (S

P)

(12) r
hs4 (S

P)

(13) r
hs5 (S

P)

(14) x
_solve (S

P)

(15) y
_solve (S

P)

(16) z
_solve (S

P)

(17) tx
invr (

SP)

(18) tz
etar (

SP)

(19) r
prj3

 (M
G)

(20) p
sin

v (M
G)

(21) in
terp1 (M

G)

(22) r
esid

 (M
G)

(23) m
ain (B

S)

(24) ti
lin

g1 (F
M)

Geomean

M
A

P
E

 (
%

)

72-core Intel Xeon platformBest-F

LoopPerf-S

LoopPerf-T

1

2

3

4

18 36 54 72

S
p
ee

d
u
p

CPU cores

Best-F
LoopPerf-S
LoopPerf-T
measurement

(1) x solve (BT)

18 36 54 72

CPU cores

(2) y solve (BT)

18 36 54 72

CPU cores

(3) z solve (BT)

18 36 54 72

CPU cores

(4) add (BT)

1

2

3

4

18 36 54 72

S
p
ee

d
u
p

CPU cores

(5) conj grad2 (CG)

18 36 54 72

CPU cores

(6) cffts1 (FT)

18 36 54 72

CPU cores

(7) cffts2 (FT)

18 36 54 72

CPU cores

(8) cffts3 (FT)

1

2

3

4

18 36 54 72

S
p
ee

d
u
p

CPU cores

(9) rhs1 (SP)

18 36 54 72

CPU cores

(10) rhs2 (SP)

18 36 54 72

CPU cores

(11) rhs3 (SP)

18 36 54 72

CPU cores

(12) rhs4 (SP)

1

2

3

4

18 36 54 72

S
p
ee

d
u
p

CPU cores

(13) rhs5 (SP)

18 36 54 72

CPU cores

(14) x solve (SP)

18 36 54 72

CPU cores

(15) y solve (SP)

18 36 54 72

CPU cores

(16) z solve (SP)

1

2

3

4

18 36 54 72

S
p
ee

d
u
p

CPU cores

(17) txinvr (SP)

18 36 54 72

CPU cores

(18) tzetar (SP)

18 36 54 72

CPU cores

(19) rprj3 (MG)

18 36 54 72

CPU cores

(20) psinv (MG)

1

2

3

4

18 36 54 72

S
p
ee

d
u
p

CPU cores

(21) interp1 (MG)

18 36 54 72

CPU cores

(22) resid (MG)

18 36 54 72

CPU cores

(23) main (BS)

18 36 54 72

CPU cores

(24) tiling1 (FM)

Fig. 13. The predicted speedup and the measured speedup of the parallel loops on the 72-core Intel platform.

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 12

for OpenMP applications. LoopPerf-S has a higher error with
a geometric mean of 13.9%, and the Best-F configuration also
shows a higher geometric mean error of 10.8%.

For Fig. 12 (1)–(3) x/y/z solve (BT), (6)–(7) cffts1-2, and
the (23) main loop, LoopPerf-S, LoopPerf-T, and Best-F pre-
dict almost a linear speedup. These workloads have low
memory access rates as shown in Fig. 4 (a), (c), and (d),
and the speedup models consider these workloads to be
CPU-intensive. However, the predictions have small errors
on a large number of threads because of the loop scheduling
overhead. Comparing LoopPerf-T with LoopPerf-S and Best-F,
the advantages of LoopPerf-T become apparent for memory-
intensive loops such as (4) add, (5) conj grad2, (8) cffts3, (9)–
(13) rhs1-5, (14)–(16) x/y/z solve (SP), (17) txinvr, and (18)
tzetar. The results imply that LoopPerf-T can successfully
compute the parameter values of the queueing systems
compared to LoopPerf-S and Best-F. For example, looking
at (5) conj grad2, (8) cffts3, (9)–(13) rhs1-5, LoopPerf-S failed
to accurately predict the speedup for loops with a larger
number of CPU nodes. LoopPerf-S often over-estimates the
speedup compared to the measurements. Workloads tend to
have a higher ratio of memory prefetch operations (a higher
memory service rate) on a small number of CPU nodes.
LoopPerf-S, however, computes the memory service rates
based only on a single profiling using one CPU node. There-
fore, LoopPerf-S may over-estimate the memory service
rates for a larger number of CPU nodes and yield a lower
memory response time than the actual one. For speedup
curves such as (9)–(13) rhs1-5 and (14)–(16) x/y/z solve (SP),
on the other hand, Best-F often over-estimates the speedup
for a small number of CPU nodes and under-estimates for
a larger number of CPU nodes. The trend shows that using
one constant mean memory service rate does not capture
the variance of the memory service rate well. LoopPerf-
T provides good prediction accuracy and similar speedup
curves with measurements for most parallel loops.

Analytical modeling through queueing models admit-
tedly has limitations for irregular workloads regarding
their memory access distribution and load imbalance.
The LoopPerf-T technique does not accurately predict the
speedup of irregular loops such as (21) interp1 and (22) resid
of the MG application. In Section 3, we have shown exper-
imentally that the memory accesses of these workloads do
not follow a Poisson distribution (Fig. 4 (c)) and that these
workloads also suffer from a load imbalance in Fig. 9 (a).

Overall, the results show that LoopPerf-T is able to
accurately predict the performance scalability of regular
parallel loops. The experiments validate that the presented
methodology can practically model memory performance
of parallel loops in modern multi-socket multi-core plat-
forms. Despite the higher error rates for pathological curves
from irregular workloads, the high accuracy of the predic-
tion technique for regular workloads makes the presented
queueing system a good candidate for performance model-
ing and optimization in multi-socket multi-core systems.

6.2 72-core Intel Xeon Platform
Fig. 13 presents the speedup prediction results for the 72-
core Intel Xeon platform. LoopPerf-T accurately predicts the
speedup with a geometric mean error of 6.7%. LoopPerf-
S and Best-F also achieve good accuracy with an error of

6.5% and 6.7%, respectively. The difference among the three
methods is not prominent because the speedup is predicted
for only four different allocations (1-4 CPU nodes). Note that
hyperthreading has been disabled to not incur interference
in a physical core in accordance with the simplifications
stated in Section 3.1.

In Fig. 13, the speedup curves of CPU-intensive loops
such as (1)–(3) x/y/z solve (BT) and (6)–(7) cffts1-2, show a
similar pattern to the AMD platform from Fig. 12. LoopPerf-
T provides good predictions for memory-intensive parallel
loops. For irregular loops such as (21) interp1 and (22) resid
of the MG application, LoopPerf-T provides better prediction
results compared to the AMD platform. The effects of these
irregular loops were smaller in the Intel system compared to
the AMD system. All the three speedup models, however,
do not predict the speedup of (5) conj grad2 and (24) tiling1
well. In these cases, the performance is limited by other fac-
tors such as loop scheduling and cache coherence overhead
between multiple sockets rather than the memory system.

7 DISCUSSION

The analytical approach presented in this paper makes
several assumptions as discussed in Section 3. Although
the assumptions are justified for parallel loops of scientific
applications in NPB, it remains a challenge to apply the
presented approach to other types of parallel loops that
do not satisfy these assumptions. Here, we briefly discuss
potential solutions to address these challenges.

A first important assumption is that the loops have
no loop-carried dependencies. In the presence of loop-
carried dependencies (e.g., pipelined parallelism), the major
limiting factors for performance are synchronization and
scheduling overhead in addition to the memory perfor-
mance. The presented performance model is able to offer
an insight into the memory performance. To model the
synchronization time for N threads Sync Time (N), existing
analytical approaches [28] can be employed.

Second, the presented model assumes a Poisson distribu-
tion for memory requests and exponential memory service
times. For the targeted parallel loops, this assumption is
verified in Section 3, however, other loops may exhibit
different distributions. In that case, the queueing models
need to be solved with discrete event simulation.

Third, contention at intra-node shared resources such
as shared caches and floating point units can be modeled
in a more sophisticated way. For example, although LLC
contention is already implicitly considered in this work
because the memory request rates are measured after LLC
contention happens, using other intra-node resource inter-
ference models [29] can be useful if the performance needs
to be estimated on a finer level. Note, however, since the
presented model is evaluated using hardware performance
counters, the effects of such resource contention are implic-
itly considered to a certain degree.

Lastly, all experiments in this paper assume (1) dynamic
loop scheduling and (2) that the data is spread across all
memory nodes as is standard practice for runtime systems
that control the parallelism of workloads [2], [30]. In our pre-
vious work [8], Best-F has been evaluated for other schedul-
ing methods including static, guided and dynamic schedul-
ing as well as for different memory allocation schemes.

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 13

The results show that the presented queueing system-based
approach works well for the different execution scenarios
except for a number of pathological cases where the parallel
loops suffer from a large load imbalance with static schedul-
ing.

8 RELATED WORK

Runtime systems often adjust the number of threads
of parallel programs for optimizations on multi-cores.
ACTOR [31] adjusts thread count for power and perfor-
mance optimizations based on a prediction model that re-
quires hardware performance counters. Varuna [3] executes
a parallel program with a different number of threads at
runtime and performs regression to compute the optimal
thread count. Parcae [2] and Aurora [4] use hill-climbing ap-
proaches to find the optimal thread count. Aurora considers
diverse metrics when computing the thread count. These
approaches, however, do not provide information about the
memory performance on modern multi-socket systems.

Several performance modeling techniques have been
presented for multi-socket systems. Pandia [32] predicts
the performance of parallel applications for different thread
counts and placements. The performance prediction is based
on six different profiling runs to obtain the performance fea-
tures. NuCore [33] is an analytical model to predict the opti-
mal core allocation for multi-threaded applications. NuCore
finds the core allocation that maximizes the memory band-
width usage at minimum core count. Integer programming
is used to solve the model. A detailed DRAM performance
model, DraMon [34], is employed to predict the memory
performance in NuCore. DraMon requires a number of
parameters that need to be obtained from expert knowledge
or architecture data sheets. Our method is orthogonal to
these techniques and has unique advantages. The presented
method requires a small number of input parameters that
can be obtained from hardware performance counters. In
addition, the queueing systems analytically compute the
performance of each memory controller and interconnection
link separately using closed-form expressions; such infor-
mation can be used for various optimizations.

Applying queueing models to model multiprocessor ar-
chitectures has been discussed in the literature. Jonkers [12],
[35] has presented conceptual queueing models for multi-
processor architectures consisting of multiple memory con-
trollers and an interconnection network. However, these
works do not provide an evaluation on real hardware
platforms. Tudor et al. [6], [7] applied an M/M/1 queueing
system to evaluate memory contention in an SMP system
with Uniform Memory Access (UMA) times. In contrast
to our work, they do not apply a queueing system for
the interconnection links in NUMA machines; instead, they
used regression to evaluate the performance on a different
number of CPU nodes. Moreover, the M/M/1 model assumes
an infinite number of queueing customers, however, multi-
processor systems contain a finite number of cores.

In our previous work [8], we have presented a speedup
prediction model using M/M/1/N/N queueing systems. This
paper extends the previous work in a number of ways.
First, this paper provides an experimental study showing
that parallel loops act like queueing customers. Second, the

previous work uses simpler queueing systems assuming a
fully-connected interconnection network and does not take
into account memory performance variations with hard-
ware optimizations. As reported in Section 6, the presented
technique in this paper provides more accurate prediction
results than the maximum bound of accuracy when using
fixed memory service rates. Last, this paper focuses on
OpenMP parallel loops and provides an evaluation for two
different platforms while the previous work mostly evalu-
ates OpenCL data-parallel kernels on a single platform.

9 CONCLUSION

With an increasing number of processor sockets and mem-
ory controllers in shared-memory systems, performance
modeling of parallel loops poses several challenges that
hinder analysts from using existing queueing model-based
techniques. In this paper, we presented a methodology
to model the memory system performance of multi-
socket multi-core systems using queueing systems. For
multi-socket systems, we presented hierarchical M/M/1/N/N
queueing systems that are able to evaluate the performance
of each interconnection link and each memory controller.
The parameter values are computed in the presence of
variations from hardware optimizations while solely relying
on hardware performance counters of AMD and Intel pro-
cessors. Based on the queueing systems, the performance of
OpenMP parallel loops is predicted with average percentage
errors of 8% for AMD and 7% for Intel multi-socket systems.
The information obtained from the model can be used not
only for performance modeling of parallel loops but also to
improve overall CPU and memory system utilization [30].

ACKNOWLEDGMENTS

This work was supported by the National Research Foun-
dation of Korea (NRF) funded by the Korean government,
in part, by grants NRF-2015K1A3A1A14021288, 2016R1A2-
B4009193, by the BK21 Plus for Pioneers in Innovative Com-
puting (Dept. of Computer Science and Engineering, SNU,
grant 21A20151113068), and by the Promising-Pioneering
Researcher Program of Seoul National University in 2015.
ICT at Seoul National University provided research facilities
for this study.

REFERENCES

[1] L. Dagum and R. Enon, “OpenMP: an industry standard api for
shared-memory programming,” Computational Science & Engineer-
ing, IEEE, vol. 5, no. 1, 1998.

[2] A. Raman, A. Zaks, J. W. Lee, and D. I. August, “Parcae:
A system for flexible parallel execution,” in Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’12. New York, NY,
USA: ACM, 2012, pp. 133–144. [Online]. Available: http:
//doi.acm.org/10.1145/2254064.2254082

[3] S. Sridharan, G. Gupta, and G. S. Sohi, “Adaptive, efficient,
parallel execution of parallel programs,” in Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’14. New York, NY, USA: ACM,
2014, pp. 169–180. [Online]. Available: http://doi.acm.org/10.
1145/2594291.2594292

[4] A. F. Lorenzon, C. C. D. Oliveira, J. D. Souza, and A. C. S. B. Filho,
“Aurora: Seamless optimization of openmp applications,” IEEE
Transactions on Parallel and Distributed Systems, pp. 1–1, 2018.

MANUSCRIPT SUBMITTED TO THE IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS (TPDS) 14

[5] J. Sztrik, Basic queueing theory. University of Debrecen: Faculty of
Informatics, 2011.

[6] B. M. Tudor, Y. M. Teo, and S. See, “Understanding off-chip
memory contention of parallel programs in multicore systems,” in
Parallel Processing (ICPP), 2011 International Conference on. IEEE,
2011, pp. 602–611.

[7] B. M. Tudor and Y. M. Teo, “A practical approach for performance
analysis of shared-memory programs,” in Parallel & Distributed
Processing Symposium (IPDPS), 2011 IEEE International. IEEE, 2011,
pp. 652–663.

[8] Y. Cho, S. Oh, and B. Egger, “Online scalability characterization of
data-parallel programs on many cores,” in 2016 International Con-
ference on Parallel Architecture and Compilation Techniques (PACT),
Sept 2016, pp. 191–205.

[9] “GNU libgomp,” http://gcc.gnu.org/onlinedocs/libgomp, [on-
line; accessed June 2019].

[10] H. Li, S. Tandri, M. Stumm, and K. C. Sevcik, “Locality and
loop scheduling on numa multiprocessors,” in 1993 International
Conference on Parallel Processing - ICPP’93, vol. 2, Aug 1993, pp.
140–147.

[11] B. Berg, J.-P. Dorsman, and M. Harchol-Balter, “Towards
optimality in parallel job scheduling,” Proc. ACM Meas. Anal.
Comput. Syst., vol. 1, no. 2, pp. 40:1–40:30, Dec. 2017. [Online].
Available: http://doi.acm.org/10.1145/3154499

[12] H. Jonkers, “Queueing models of shared-memory parallel ap-
plications,” Computer and Telecommunication Systems Performance
Engineering, 1994.

[13] M. Casas and G. Bronevetsky, “Active measurement of the im-
pact of network switch utilization on application performance,”
in 2014 IEEE 28th International Parallel and Distributed Processing
Symposium, May 2014, pp. 165–174.

[14] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press,
2013.

[15] G. Sartori, “Hypertransport Technology,” Platform Conference, 2001.
[16] B. Mutnury, F. Paglia, J. Mobley, G. K. Singh, and R. Bellomio,

“Quickpath interconnect (qpi) design and analysis in high speed
servers,” in 19th Topical Meeting on Electrical Performance of Elec-
tronic Packaging and Systems, Oct 2010, pp. 265–268.

[17] D. Kroft, “Lockup-free instruction fetch/prefetch cache
organization,” in Proceedings of the 8th Annual Symposium on
Computer Architecture, ser. ISCA ’81. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1981, pp. 81–87. [Online].
Available: http://dl.acm.org/citation.cfm?id=800052.801868

[18] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared dram
systems,” in Proceedings of the 35th Annual International Symposium
on Computer Architecture, ser. ISCA ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 63–74. [Online]. Available:
https://doi.org/10.1109/ISCA.2008.7

[19] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The NAS parallel benchmarks,” International
Journal of High Performance Computing Applications, vol. 5, no. 3,
pp. 63–73, 1991.

[20] S. Seo, G. Jo, and J. Lee, “Performance characterization of the
nas parallel benchmarks in opencl,” in 2011 IEEE International
Symposium on Workload Characterization (IISWC), Nov 2011, pp.
137–148.

[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The
parsec benchmark suite: Characterization and architectural
implications,” in Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’08.
New York, NY, USA: ACM, 2008, pp. 72–81. [Online]. Available:
http://doi.acm.org/10.1145/1454115.1454128

[22] AMD, “AMD Opteron 6300 Series Processors 6380 product in-
formation,” https://www.amd.com/en/products/6380, [online;
accessed June 2019].

[23] Intel, “Intel Xeon Processor E7-8870 v3,” http://ark.intel.com/
products/84682/Intel-Xeon-Processor-E7-8870-v3-45M-Cache-2
10-GHz, [online; accessed June 2019].

[24] “Scipy stats.ks 2samp document,” https://docs.scipy.org/doc/
scipy-0.14.0/reference/generated/scipy.stats.ks 2samp.html, [on-
line; accessed June 2019].

[25] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high
performance computers,” University of Virginia, Charlottesville,
Virginia, Tech. Rep., 1991-2007, a continually updated technical

report. http://www.cs.virginia.edu/stream/. [Online]. Available:
http://www.cs.virginia.edu/stream/

[26] AMD, “BIOS and kernel developer’s guide (BKDG) for AMD
family 15h models 00h-0fh processors,” 2012.

[27] Intel, “Intel Xeon Processor E5 and E7 v3 Family Uncore Perfor-
mance Monitoring Reference Manual,” 2015.

[28] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval, “Analytical mod-
eling of pipeline parallelism,” in 2009 18th International Conference
on Parallel Architectures and Compilation Techniques, Sep. 2009, pp.
281–290.

[29] V. Selfa, J. Sahuquillo, S. Petit, and M. E. Gmez, “A hardware
approach to fairly balance the inter-thread interference in shared
caches,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 11, pp. 3021–3032, 2017.

[30] Y. Cho, C. A. C. Guzman, and B. Egger, “Maximizing system
utilization via parallelism management for co-located parallel
applications,” in Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’18.
New York, NY, USA: ACM, 2018, pp. 14:1–14:14. [Online].
Available: http://doi.acm.org/10.1145/3243176.3243199

[31] M. Curtis-Maury, F. Blagojevic, C. D. Antonopoulos, and D. S.
Nikolopoulos, “Prediction-based power-performance adaptation
of multithreaded scientific codes,” IEEE Transactions on Parallel and
Distributed Systems, vol. 19, no. 10, pp. 1396–1410, Oct 2008.

[32] D. Goodman, G. Varisteas, and T. Harris, “Pandia: Comprehensive
contention-sensitive thread placement,” in Proceedings of the
Twelfth European Conference on Computer Systems, ser. EuroSys ’17.
New York, NY, USA: ACM, 2017, pp. 254–269. [Online]. Available:
http://doi.acm.org/10.1145/3064176.3064177

[33] W. Wang, J. W. Davidson, and M. L. Soffa, “Predicting the memory
bandwidth and optimal core allocations for multi-threaded appli-
cations on large-scale numa machines,” in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
March 2016, pp. 419–431.

[34] W. Wang, T. Dey, J. W. Davidson, and M. L. Soffa, “Dramon:
Predicting memory bandwidth usage of multi-threaded programs
with high accuracy and low overhead,” in 2014 IEEE 20th In-
ternational Symposium on High Performance Computer Architecture
(HPCA), Feb 2014, pp. 380–391.

[35] H. Jonkers, “Queueing models of parallel applications: the glamis
methodology,” in Computer Performance Evaluation Modelling Tech-
niques and Tools. Springer, 1994, pp. 123–138.

Younghyun Cho received BS degree in com-
puter science from the University of Seoul in
2013. He is currently working toward the PhD de-
gree at the computer systems and platforms lab-
oratory, Seoul National University. His research
interests include runtime systems for manycore
systems and performance modeling of parallel
applications.

Surim Oh is currently a software developer at
SAP Labs Korea, Inc. Surim Oh received B.S.
in computer science and engineering from So-
gang University in Seoul in 2015 and the M.S. in
computer sicence and engineering from Seoul
National University in 2017. She served as a
research engineer for Hyundai Motor Company
for a year. Her research interests include many-
core runtime systems, parallel processing, and
database management systems.

Bernhard Egger received the diploma in com-
puter science from the Swiss Federal Institute of
Technology in Zrich in 2001 and the PhD degree
in computer science and engineering from Seoul
National University in 2008. After spending three
years at SAIT, Samsung Electronics research
institute, he rejoined Seoul National University
in 2011 as a faculty member where he currently
is an associate professor at the Department
of Computer Science and Engineering. His re-
search interests include programming language

design, compilers, and operating systems for heterogeneous manycore
systems. He is a member of the IEEE and ACM. More information can
be found at https://csap.snu.ac.kr/.

