
Slide 1     2016 HEIG-VD SNU Summer School  

Introduction to Python 
 
 

Efstratios RAPPOS 
 

efstratios.rappos@heig-vd.ch 
 



Slide 2     2016 HEIG-VD SNU Summer School  

Background 

•  Easy and popular programming language 
•  Interpreted: must have python installed to 

use it (already installed in Linux and Mac).  
•  Two flavors: Python 2.7 and Python 3. 

Small differences, but not compatible.  



Slide 3     2016 HEIG-VD SNU Summer School  

Background 

•  Write the code in a text file (usually .py) 
•  Run with python	file.py	

•  In linux or mac, can make runnable by 
adding line #!/usr/bin/env	python	to the 
top of file 

•  Then run simply by file.py (or ./file.py etc) 
•  Can also write commands directly in 

console (console: type python) 



Slide 4     2016 HEIG-VD SNU Summer School  

Background 

Example: console python 
Exit with exit()	or quit()	or control-C	



Slide 5     2016 HEIG-VD SNU Summer School  

Background 

Whitespace indentation (space, tab at the beginning 
of a line) is VERY IMPORTANT  
Indentation must be consistent, tab is not the same 
as many spaces 
-  Indentation decides grouping 
	
	
if	x	==	3:	
....print	"X	equals	3."	
elif	x	==	2:	
....print	"X	equals	2."	
else:	
....print	"X	equals	something	else."	
print	"This	is	outside	the	'if'."	

 
most common error for first time users... 

Exact number of spaces is 
very important ! 



Slide 6     2016 HEIG-VD SNU Summer School  

Background 

Comments start with # 
 

To go to next line prematurely use \ 
 
CAPITALS are also IMPORTANT in variable names 

 



Slide 7     2016 HEIG-VD SNU Summer School  

Variable assignment 

Fundamental variable assignments  
	

	

	

A=3	

B=3.5	

C='hello'	or  C="hello"	or C	="""hello"""	
D=(3,4,5)	or  D=(3,'hello',4.5)	or D=(3,)	
A->	integer	
B->	decimal	(float)	
C->	string	
D->	tuple						
For	Tuples,	can	retrieve	an	element	via	D[0],	D[1],	D[2].	Elements	are	
read-only.	

	

A=3 

variable 
(Letters, _  

and numbers) 

value 

Need comma otherwise will 
be integer 3, not tuple 



Slide 8     2016 HEIG-VD SNU Summer School  

Variable assignment 

Operations 
Integer and Float: python converts as needed 
A	=	3	+	2				<=	integer	
A	=	3	+	2.5		<=	float	(5.5)	
B	=	2*(1+7)	+	3**2		 	<=	integer	(25)	
C	=	100	%	97			<=	integer	modulo	(3)	

Advantage of Python: integer has no limitation 
2**200		

=>1606938044258990275541962092341162602522202993782792835301
376	

Float is 8-byte so same limitation as double in other 
languages ( ~ 2E-208 – 2E208). Try 

	import	sys;	sys.float_info	



Slide 9     2016 HEIG-VD SNU Summer School  

Variable assignment 

Operations: strings	
C	=	"hello"	+	"	SU"		<=	string	joining,	a	new	
string	is	generated	and	old	ones	deleted	

	

C	=	"hello"	*	3		=>	"hellohellohello"	

	

len(C)	also gives length 

	

For strings one can get the individual characters 
C	=	"hello"	=>	C[0]	is	"h"		(a string of len 1)												

										C[1:3]	is	"el"		(a string of len 2) 



Slide 10     2016 HEIG-VD SNU Summer School  

Variable assignment 

Operations: tuples 
			D=(3,4,5)	or  D=(3,'hello',4.5)	or D=(3,)	

	

Can get individual elements via: 
			D[0],	D[1]	etc	

	

Can get all the elements in one go via 
a,	b,	c	=	D					<=	number	of	vars	must	be	the	same	
as	the	size	of	tuple		

(a	=	first	element,	b	=	second	element)		



Slide 11     2016 HEIG-VD SNU Summer School  

Variable assignment 

Operations: tuples 
	D=(3,4,5)	or  D=(3,'hello',4.5)	or D=(3,)	

	

Elements are read only.  
Also cannot add or remove elements from a tuple.  

But we can create new tuple with desired elements 
E.g., we cannot remove last element of tuple, but 
nothing prevents us from saying  
		D	=	D[0:1]		=>	first	2	elements	of	tuple	

We create a new tuple with the fist 2 elements. The 
old one is deleted. 



Slide 12     2016 HEIG-VD SNU Summer School  

Variable assignment 

Operations: tuples 
D=(3,4,5)	or  D=(3,'hello',4.5)	or D=(3,)	

Addition		
D	=	(1,	2,	3)	+	(4,	5)	=>	(1,2,3,4,5)	NEW	LIST	

Multiplication 

D	=	(1,2)*3	=>	(1,2,1,2,1,2)	

	

Tuples are very similar to strings   

(except tuples can have elements that are other 
things except characters) 



Slide 13     2016 HEIG-VD SNU Summer School  

Variable assignment 

E->	list	
F->	dictionary	 
Lists = arrays 

	 	E=[1,2,3]	or	E=[1,'abc',3]	or	E=[1]	
To retrieve an element, use E[0], E[1], etc. Elements can be modified. 
Array can expand. Ordering is maintained. 

 

Dictionaries = key-value stores (list of key:value) 
F={'France':'FR',	'Korea':'KR',	'Switzerland':'CH'}	
Every Key must be unique in list, using the same key many times => 
last assignment is remembered 

To set/retrieve a value use F[key] eg F['France']. Dictionary can 
expand. Pairs are not ordered. 
	
			

 



Slide 14     2016 HEIG-VD SNU Summer School  

Variable assignment 

Two more types		
A->	integer	
B->	decimal	(float)	
C->	string	
D->	tuple		
E->	list	
F->	dictionary	 

Lists are very common. 

 
Can convert from list to tuple   
 

li	=	list(tu)	
tu	=	tuple(li)	

 

Not often used 



Slide 15     2016 HEIG-VD SNU Summer School  

Variable assignment 

Assigning to another variable 
	

	

	

What	happens	depends	on	the	type	of	variable	A	

	
A->	integer 	 	 	new	object	
B->	decimal	(float) 	 	new	object	
C->	string	 	 	 	new	object	
D->	tuple		 	 	 	new	object	
E->	list 	 	 	 	same	object	
F->	dictionary	 	 	 	same	object 

A=3 
B=A 

new variable value to get 



Slide 16     2016 HEIG-VD SNU Summer School  

Variable assignment 

Assigning to another variable 
	

	

	

NEW	OBJECT:	
A->	integer 	 	 	new	object	
B->	decimal	(float) 	 	new	object	
C->	string 	 	 	new	object	
D->	tuple	 	 	 	new	object	

	

A=3 	=> 	A=3	

B=A 	=> 	B=3 	 	These	two	'3'	are	different	

	

X='hello'			=> 	X='hello'	

Y=X									=> 	Y='hello'		 	These	two	'hello'	are	different	

	

	

A=3 
B=A 

new variable old value 

A=3 
B=3 

Effectively the 
same as: 



Slide 17     2016 HEIG-VD SNU Summer School  

Variable assignment 

Assigning to another variable 
	

	

	

NEW	OBJECT:	
E->	list 	 	 	same	object	
F->	dictionary 	 	same	object	

	

	

E=[1,2,3]	=> 	E=[1,2,3]	

F=E 	=> 	F=[1,2,3]	 	These	two	[1,2,3]	are	the	same!	

	
Generally, not a good idea to use F=E for lists or dictionaries..  
This is because we simply create a duplicate name for the same object, 
quite confusing and often unnecessary. 

E=[1,2,3] 
F=E 

new variable old value 

E=[1,2,3] 
F=[1,2,3] 

NOT the  
same as: 

E=[1,2,3] 
  // 
F 

but like this: 



Slide 18     2016 HEIG-VD SNU Summer School  

Lists (arrays) 

Lists are used a lot.  
A=[1,2,3,4,5] 

-  To get an element: A[0], A[1], … 
-  To change an element in-place:  A[1] = 3 
-  To create a NEW list with a range: 

-  A[1:3]  =>  [2,3] 

-  A[:3]  => from beginning,   

-  A[3:] to the end,  
-  A[:] everything (make a copy) 

Position of 
first element 

to get 

Position of 
element after 
last element to 
get 

This way, the size 
of the new list is 
ALWAYS the diff of 
the two indexes 



Slide 19     2016 HEIG-VD SNU Summer School  

Lists (arrays) 

A=['a','b','c','d','e'] 
-  Length of list: len(A)	

-  To add an element at the end: A.append('f')	

-  To add an element after 2nd element: A.insert(2,'g')	
-  Number of occurrences: A.count('c')	

-  Index of first occurrence: A.index('c')	
-  Reverse a list (in place): A.reverse()	

-  Sort a list (in place): A.sort()	

-  To remove an element (first occurrence): A.remove('c')	
-  To remove an element by index: del	A[1]	

-  To remove a range: del	A[1:3]	
-  To remove all elements:	del	A[:]	or	A.clear()(ver.3.3)	Same as A=[]	

-  To remove the list (or any variable) and save space:  del	A	



Slide 20     2016 HEIG-VD SNU Summer School  

Lists (arrays) 

A=['a','b','c','d','e']     B=['f','g'] 

-  To combine two lists into a NEW list: 
	C	=	A+B				C =>  ['a','b','c','d','e',f','g'] 

 

-  To add a second list to the CURRENT one: 
 A.extend(B)    A=>['a','b','c','d','e',f','g'] 
 Note the difference with:   

 A.append(B)   A=> ['a','b','c','d','e', [f','g'] ] 
-  Q: what happens if we run A.extend(A) and A.append(A)?  



Slide 21     2016 HEIG-VD SNU Summer School  

Lists (arrays) 

A=['a','b','c','d','e'] 
 

Remember: B	=	A		Does not create a new list, just a 
new name for existing List.  
What if we really want a NEW list (separate to old)?  
Solutions 
B	=	A[:]				B	=	A.copy()	(ver.3.3)									

B	=	A	+	[]	

B	=	list(A)									#probably fastest 

B	=	copy.copy(A)				# requires 'import copy' 

B	=	copy.deepcopy(A)		# also copies elements of list if needed (eg        
    for list of lists) 



Slide 22     2016 HEIG-VD SNU Summer School  

Control and Loops: if 

If		…			elif		(=else if) …  else	
 

Logical comparisons: 
<				>				<=				>=				==				!=				in				not	in		

Combining:     and	,	or	,	not	
	
if	i==3	or	i>10				
if	i	>=	4	
if	3	in	C													#	C	=	(1,2,3)	a	tuple,	True	
if	'a'	in	D											#	D	=	"abcde"		a	string,	True	
if	3	in	E													#	E	=	[1,2,3,4]	a	list,	True	
if	D	==	"abcd"								#	False	
if	"hello"	<	"zello"		#	True,	can	compare	strings	/	tuples	

 



Slide 23     2016 HEIG-VD SNU Summer School  

Control and Loops: for 
For creates loops, but not on a sequence of integers, like other 
languages 

 
words	=	['dog',	'cat',	'mouse']	
for	w	in	words:	
			print	w	
 
Note w exists after the end of the loop, containing  the last value! 
 

If we need to modify the object we are iterating, best to make a copy: 
	
for	w	in	words[:]:	
			if	len(w)>3:	
					words.insert(0,w)	
 results in ['mouse', 'dog', 'cat', 'mouse'] 



Slide 24     2016 HEIG-VD SNU Summer School  

Control and Loops: for 
To iterate over integers, need to create a sequence via  range()	
for	i	in	range(5):	
			print	i								<=	0,	1,	2,	3,	4	

 
Can specify a range	

			range(2,10)			<=	2,3,4,..,9	

	
Can have a step as 3rd parameter 

				range(2,10,2)	<=	2,4,6,8	

while executes a loop if a condition is true 
i=1	
while	i	<	10:	
					print	i	
					i	=	i	+	1	

		

	  



Slide 25     2016 HEIG-VD SNU Summer School  

Control and Loops: for 
To iterate over a list/tuple, simply 

	for	v	in	['a','b','c']:	
 

To get index and value of a list[] can use enumerate()	

	for	i,v	in	enumerate(['a',	'b',	'c']):	

Q: what do we get from list(enumerate(range(5)))?  
 

 
To iterate over dictionary, can get key and value at the same time: 

	for	k,v	in	D.items():	
			 	 	print	k	
	
No guarantee about the order the items of the dictionary will appear 

 
    



Slide 26     2016 HEIG-VD SNU Summer School  

Control and Loops: for 

 
break and continue => exit loop or skip iteration 

Unique in python: for and while can have an else statement, it is 
executed if the loop ends normally: 

		
	for	i	in	range(5):	

		 	 	print	i	
	else:	

	 	 	print	"end"	
	

0	1	2	3	4	end	

	

else	will not be executed if the loop terminates due to a break  



Slide 27     2016 HEIG-VD SNU Summer School  

Back to Lists (arrays) 

To create a list 'dynamically'  ('list comprehensions') 
	 	squares	=	[]		
	 	for	x	in	range(10):	

			 	 	 	squares.append(x**2)	

Same as: 
	 	squares	=	[x**2	for	x	in	range(10)]	

 
Can also have an optional if at the end 

	squares	=	[x**2	for	x	in	range(10)	if	x	!=	5]	

	

	=>	[0,1,4,9,16,36,49,64,81]	



Slide 28     2016 HEIG-VD SNU Summer School  

Functions 

 
If you use a function a lot, can store it using def	
 

def	length(a,	b):	

			d	=	(a*a	+	b*b)**0.5	

			return	d	
 
length(3,4)  => 5.0 



Slide 29     2016 HEIG-VD SNU Summer School  

Modules 
Modules are groups of functions defined in separate files and that you 
can use.  

Generally, you will not need to create a module, but you can use 
existing ones.  

 
Python has many modules already. Other modules can be 
downloaded/installed from python repositories on the internet 

To use a module, first you need to import it (usually at the beginning 
of your file).  
For example, module math 

 
import	math	
A	=	math.sqrt(81)				=>		9.0	
A	=	math.cos(3.14)			=>		-0.99999	
A	=	math.log(256,2)		=>			8.0	



Slide 30     2016 HEIG-VD SNU Summer School  

Modules 
import	math	
A	=	math.sqrt(81)				=>		9.0	
A	=	math.cos(3.14)			=>		-0.99999	
A	=	math.log(256,2)		=>			8.0	

 
To avoid using math. before functions all the time, can use: 
	
			from	math	import	sqrt,	cos,	log				
or  
			from	math	import	*	

 
The we can use  
	
from	math	import	*	
A	=	sqrt(81)	
A	=	cos(3.14)				
A	=	log(256,2)			



Slide 31     2016 HEIG-VD SNU Summer School  

Modules 
Because code in a module can be run on its own, or (imported) from 
other modules, a test for __main__	can be done to determine which 
case it is.  
 
This is quite common. E.g.  
	
def	length(a,	b):	
			d	=	(a*a	+	b*b)**0.5	
			return	d	
	
	
#	This	code	below	runs	when	file	is	run	on	it	own,	but	not	when	
#											file	is	imported	from	another	file.	
	
if	__name__	==	'__main__'	:			
			a	=	5	
			b	=	6	
			print	length(a,b)	



Slide 32     2016 HEIG-VD SNU Summer School  

Read and Write files 
Read from a file: 

	 	 	1	John	Brown	
	 	 	2	Emma	Lewis	
	 	 	3	Maria	Johnson	

file1	=	open("C:\\Users\\name\\Documents\\input.txt",	"r")	
for	line	in	file1:										<=	reads	file	one-line-at-a-time	
			element	=	line.strip().split("	")	
					<=	element[0]	is	1,	element[1]	is	'John',	element	2	is	Brown	
file1.close()	
	

Useful string functions: strip() removes spaces at beginning / end 
split() splits a string into many strings 

	 	 	Need to remember to close() the file.  
Alternatively, the following version ensures the file is closed 
automatically when "with" finishes 
with	open('filename')	as	file1:			
			for	line	in	file1:	
								element	=	line.strip().split("	")	

"r" means read, and is 
optional (default is "r") 



Slide 33     2016 HEIG-VD SNU Summer School  

Read and Write files 
Write to a file: 
  
file1	=	open("filename",	"w")				<=	w	means	write	
file1.write("abcdefg\n")		<=	does	not	change	line	automatically	
file1.write("12345\n")	
file1.write(str(2))			<=	does	not	convert	to	string	automatically	
file1.close()																							need	to	use	str()	
	
If file exists, it is replaced.  
Just as before, we can use "with", this way the file is closed 
automatically when "with" finishes 
	
with	open('filename',"w")	as	file1:	
			file1.write("abcedef\n")			
			file1.write("12345\n")	
				
	



Slide 34     2016 HEIG-VD SNU Summer School  

Read and Write files - unicode 
Read from a unicode file – use open from the codecs module 

	 	 	1	John	Brown	
	 	 	2	Hélène	Lewis		
	 	 	3	Maria	Johnson	

import	codecs	
file1	=	codecs.open("input.txt",	encoding	=	"utf-8")	
for	line	in	file1:	
			element	=	line.strip().split("	")	
file1.close()	
	
Write to a unicode file 
	
with	codecs.open('filename',encoding="utf-8",	mode="w")	as	file1:	
			file1.write(u"abcedef\n")			
			file1.write(u"12345\n")	
	
	
In Python3, the codecs functionality is included in the default open()	
function. 


